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Abstract 

 

As the need for effective and efficient power systems grows, so does the need for more advanced 

methods to find and study partial discharge (PD) sources, which can be a sign that high-voltage 

equipment's protection is breaking down. This study suggests using Support Vector Machines 

(SVMs), Random Forests (RF), Self-Organizing Maps (SOM), and Back-propagation Neural 

Networks (BPNN) together to make PD cause discovery more accurate and useful. SVMs are very 

good at sorting complicated patterns into groups. They provide a strong framework for telling PD 

events apart from background noise. By mixing several decision trees, RF, which is known for its 

ability to learn in groups, helps make generalization better. A strong autonomous learning method 

called SOM helps group and show how PD sources are spread out in space. A popular artificial neural 

network design called BPNN is used because it can model complicated relationships and change to 

trends that don't follow a straight line. Putting these methods together in a way that makes the best 

use of their individual strengths and weaknesses creates a complete and reliable framework for PD 

investigations. Using the combined knowledge of these advanced machine learning algorithms, the 

suggested method can correctly find and spot PD sources, which will eventually make high-voltage 

systems work better and be more reliable. Comprehensive models and testing validations show that 

the proposed method works, showing that it could be used in real life for power system upkeep and 

diagnosis. This study is a big step forward in improving the most up-to-date methods for finding and 

detecting PD. It will help build stronger and longer-lasting power grids. 

 

Keywords: Partial Discharge, Support Vector Machines, Random Forests, Self-Organizing Maps, 

Back-propagation Neural Networks 

 

Introduction 

 

Power systems need high-voltage technology to work reliably in order for them to be stable and 

efficient. A condition called partial discharge (PD) can happen in insulation systems. It is often an 

early sign of problems and wear and tear that are about to happen. Finding and detecting PD sources 

is a very important part of keeping power infrastructure in good shape and making sure it works well. 

The goal of this study is to show a new, unified method that uses advanced machine learning 

techniques to make PD investigations more accurate and time-effective. As power systems change to 

keep up with rising demand and add green energy sources, the need for strong monitoring tools grows. 

PD, which is marked by breaks in the insulation in certain areas, often happens before big problems 

happen in high-voltage equipment. Finding and identifying these PD sources quickly is necessary to 

avoid major breakdowns and keep downtime to a minimum. The accuracy and sensitivity of 

traditional methods for finding PD are often poor, especially in working settings that are complicated 

and changeable [1]. A lot of people are interested in using machine learning methods to solve these 

problems because of these Support Vector Machines (SVMs), Random Forests (RF), Self-Organizing 
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Maps (SOM), and Back-propagation Neural Networks (BPNN) are all used together in this way to 

make a complete system for investigating PD. Because SVMs can sort complicated patterns into 

groups, they are a solid base for telling PD events apart from background noise. The generalization 

skills are improved by RF, a strong ensemble learning method, which brings together information 

from multiple decision trees. SOM is an autonomous learning method that helps group and show how 

PD sources are spread out in space, giving us useful information about their patterns and connections. 

Lastly, BPNN is used to describe complicated connections and change to trends that don't follow a 

straight line in the PD data. 

 

 
Figure 1: Proposed model for PD source identification model 

 

The goal of combining these machine learning techniques is to make a method that works better than 

either one alone, by using their combined strengths. For example, SVMs are very good at classifying 

data, but they might have trouble with some types of data. By combining guesses from several 

decision trees, RF [2] makes up for these flaws and improves total accuracy. On the other hand, SOM 

helps us understand where PD sources are located, which leads to a better study and finding process. 

Because it can describe complex connections, BPNN is a useful tool for finding the complex trends 

that come from different PD sources. An extensive number of simulations and actual validations are 

carried out to prove that the suggested method works. The goal of these attempts is to show that the 

combined method can correctly find and locate PD sources in a range of working situations. The 

suggested system works like an electric drive; it gives information to the neural network, which then 

figures out what it means and does what it needs to do, just like the brain does with different inputs 

[26]. The idea behind artificial neural networks comes from the way natural brain systems work, like 

how people learn to recognize things like books, cars, and pens. Artificial neural networks can 

understand complicated problems well, even though they are not as complex as the human nervous 

system. Because different partial discharges, crown discharges, and other noise signals have signals 

that look a lot alike, it is hard to tell them apart. Because of this, there is a need for a tool that can 

quickly group together different PD patterns. This goal is met by artificial neural networks, which 

learn from models and also reach other goals [3]. 

 

It has been known for a long time that artificial intelligence (AI) systems can automatically find flaws 

that cause partial discharge. Artificial neural networks (ANNs) and support vector machines (SVMs) 

are examples of shallow models. To set up a feature vector that can be processed by a few layers of 
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simple computing units, a lot of work needs to be done up front. A lot of different features, like data 

and shape descriptions, have been taught to find PD, and their diagnostic accuracy has been tested in 

different situations [25]. However, the knowledge needed to choose and figure the right features can 

make it harder for utilities to use automatic diagnosis systems. Deep learning, which uses many levels 

of computing units, has been shown to be better at speech and picture recognition tasks than basic 

models with features that were made by hand. Visualizing the information a neuron learns has 

improved, leading to better accuracy and a break from the "black box" nature of previous methods. 

This gives us a new way to look at classification problems [4].Studies have shown that the number 

of inputs to the neural network is mathematically equal to the polynomial order that works best for 

predicting the output in partial discharge pattern recognition applications. In an earlier study [5], the 

results of experiments using neural networks with one and two types of inputs and single and double 

outputs were looked at. It was seen that these neural network designs are not able to get low minimum 

mistakes. Two-stage neural network designs with single and double outputs showed little change in 

performance. A cascaded output neural network design, on the other hand, did a great job of telling 

the difference between two discharge hole sizes [26]. The goal of our study is to find different kinds 

of partial discharges by comparing the two methods used for PD pattern recognition: self-organizing 

maps and the back-propagation method for artificial neural networks. 

The models give us a controlled setting [7] to test how well the algorithm works, and the experiments 

show us how well and how often it works in the real world. The outcomes show that the suggested 

method has the ability to make PD studies much more accurate and time-effective, which will help 

build more reliable and long-lasting power systems. The proposed study brings a new and unified 

way to look into and find PD sources in high-voltage equipment. The [8] suggested method tries to 

get around the problems with current methods by using the combined intelligence of SVMs, RF, 

SOM, and BPNN. This should make it easier to find and locate PD and be more accurate. The study 

results could help improve power system diagnosis, which could lead to more reliable and long-

lasting important infrastructure in a world where energy needs are changing all the time. 

 

Related Work 

 

Using a variety of methods and tools, many research projects have made important contributions to 

the area of studying and finding causes of partial discharge (PD). The use of sound and ultrasonic 

methods for PD diagnosis is an important area of linked work. Acoustic techniques, like acoustic 

emission (AE) readings, have been looked into to see how well they work at finding and identifying 

PD sources in electrical insulation systems. The unique sound waves that are produced during [8] PD 

events are very helpful for finding the cause of a problem. Ultrasonic monitors have also been used 

to find PD activity by picking up the high-frequency sound waves that are released during the 

discharge process. These methods provide a non-intrusive way to find and identify PD, which adds 

to our knowledge of the general health of insulation systems. Also, progress in electromagnetic 

detecting technologies has been very important in making PD investigations better. Electromagnetic 

monitoring methods use monitors to pick up the electromagnetic waves that are sent out by PD events 

[9]. Based on the unique electromagnetic fingerprints of different discharge processes, this makes it 

possible to find and identify PD sources. Combining electromagnetic sensors with signal processing 

methods has been shown to help tell the difference between different types of PD, which makes source 

localization more accurate. Recently, there has been a lot of interest in combining old-fashioned PD 

identification methods with cutting-edge signal processing and machine learning methods. Signal 

analysis tools, like wavelet transforms and time-frequency analysis, have been looked at as ways to 

get useful information from PD data. These [10] characteristics are fed into machine learning 

algorithms like support vector machines (SVMs), artificial neural networks (ANNs), and grouping 

algorithms. This makes it easier to tell the difference between PD sources and find them correctly in 

the power system. Infrared (IR) thermography has also become a useful tool for finding out where 

PD comes from. The thermal patterns that are linked to PD events are captured by IR cameras, which 
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gives a visual picture of temperature changes. The unique heat patterns can help find the location and 

intensity of PD causes, adding to the effectiveness of current detection methods. 

Standardized testing [11] methods and diagnosis tools for PD study have been made possible by 

people working together in the research community. The International Electro-technical Commission 

(IEC) and the Institute of Electrical and Electronics Engineers (IEEE) have set rules and standards 

for measuring and localizing PD. These provide students and professionals in the field with a uniform 

structure. There have been big steps forward in many areas of research in the study and location of 

partial flow sources. Researchers' combined efforts have led to a better understanding of PD events. 

They have done this by using audio and electromagnetic sensors as well as machine learning and 

signal processing. Standardization efforts help make effective troubleshooting tools for the power 

business even better, making sure that ways to find and identify PD sources in high-voltage equipment 

keep getting better. 

 

Table 1: Summary of Related work 
Method Finding Application Limitation 

Acoustic Emission 

(AE) [12] 

Distinctive acoustic 

signals during PD events 

Electrical insulation systems Limited effectiveness in 

environments with high 

background noise 

Ultrasonic Sensors 

[13] 

High-frequency sound 

waves during PD 

discharge 

Non-intrusive PD detection 

and localization 

Limited penetration in certain 

insulation materials 

Electromagnetic 

Sensing [14] 

Capture of 

electromagnetic waves 

from PD 

Identification and localization 

based on electromagnetic 

signatures 

Sensitivity to external 

electromagnetic interference 

Signal Processing 

[15] 

Wavelet transforms, 

time-frequency analysis 

Enhancement of PD signal 

features for machine learning 

Reliance on expert-defined 

features may limit adaptability 

Machine Learning 

(SVM, ANN) [16] 

Discrimination between 

PD types 

Automated PD source 

identification and localization 

Training data quality impacts 

model performance 

Clustering 

Algorithms [17] 

Grouping similar PD 

patterns 

Pattern recognition and 

classification of PD sources 

Sensitivity to initial cluster 

centers and parameters 

Infrared 

Thermography [18] 

Visual representation of 

thermal patterns 

Location and severity 

assessment of PD sources 

Limited resolution for small-

scale PD sources 

Standardized Testing 

[19] 

Compliance with IEC 

and IEEE guidelines 

Development of common 

diagnostic frameworks 

Applicability may vary based 

on regional standards and 

practices 

Electromagnetic 

Interference [20] 

Detection of external 

electromagnetic signals 

Minimizing interference in 

PD investigations 

Difficulty in distinguishing 

external interference from PD 

Wavelet Transforms 

[21] 

Feature extraction from 

PD signals 

Enhancing signal analysis for 

PD identification 

Selection of appropriate 

wavelet basis requires 

expertise 

Time-Frequency 

Analysis [22] 

Extraction of time-

varying signal properties 

Improved characterization of 

dynamic PD events 

Computationally intensive for 

real-time applications 

Collaborative 

Research [23] 

Standardization 

initiatives and guidelines 

Advancement of reliable 

diagnostic tools for the power 

industry 

Adoption challenges due to 

varying research approaches 

 

Methodology 

 

A. Back-propagation Algorithm 

There are two main steps in this algorithm, the forward pass and the backward pass. The network is 

shown samples of input during the forward pass, and the output is calculated. The mistake at the 

output is then sent back through the network during the backward pass. To reduce the mistake as 

much as possible, the gradient descent method [24] is used to change the weights and biases. This 

process goes through many rounds of showing pairs of inputs and outputs, spreading errors 

backwards, and changing weights and biases until the error hits the minimum number that was set 
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[7].In Figure 2, the BP algorithm is shown in action, along with the network's neurons, which are 

working units.  

 
Figure 2: Overview of Backpropagation Neural Network 

 

After the sources (XP1,...,XPNo) are sent through the network, the result is calculated. The output 

that was calculated is then compared to the output that was wanted (TP1,..., TPNM), and any errors 

that are found are sent back through the network. The gradient descent method is used to change the 

weights over and over again until the mean square error at the end gets a good low number. 

 

• The weight update equation in the BP algorithm is given by the gradient descent rule: 

𝑤{𝑖𝑗} ←  𝑤{𝑖𝑗} −  𝜂
𝜕𝐸

𝜕𝑤{𝑖𝑗}
 

• The error term δ_j at the j-th neuron is computed as: 

𝛿𝑗 =
𝜕𝐸

𝜕𝑌𝑗
⋅

𝜕𝑛𝑒𝑡𝑗

𝜕𝑌𝑗
 

Where, 

• E is the error function, Y_j is the output of the j-th neuron, and net_j is the weighted sum of inputs 

to the j-th neuron. 

 

The BP method has some problems, even though it is widely used to find partial discharges (PDs). 

Two big problems are that it takes longer to reach agreement and training can fail [4]. As a solution 

to these problems, adding a momentum term during training speeds up convergence but takes up more 

memory [22, 25]. The momentum term helps the program get past local minima and speeds up the 

process of convergence. Their findings showed that the Backpropagation algorithm was better than 

the other ANN algorithms at accurately recognizing PD. Although it has some problems, the BP 

algorithm is still widely used in the field because it is easy to use and produces better results for PD 

recognition than other ANN algorithms. 

 

B. Ensemble Neural Network of PD identification 

Ensemble Neural Networks (ENN) train more than one Back-propagation (BP) Artificial Neural 

Network (ANN) topology and then combine their results to make them more useful in real life [5]. 

The main idea is to use the variety and accuracy of the neural networks that make up the ensemble to 

get better results overall [6]. A popular way to train ENNs is by bagging (also called "bootstrapping"). 

This method stops individual neural networks from becoming too good at what they do and helps 

manage bias and variance well. 
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Figure 3: Representation of ENN’ 

 

• Bootstrapping (Bagging): 

- Multiple training fingerprints are generated by bootstrap resampling of the original dataset. 

- Each training fingerprint is a subset of the original dataset, obtained by randomly sampling with 

replacement. 

- Some samples may be repeated, while others may be excluded, leading to diverse training sets. 

For a given dataset D of size N, a bootstrapped dataset D' is created by sampling N samples with 

replacement: 

 

𝐷′ =  {𝑑1′, 𝑑2′, . . . , 𝑑𝑁′} 

 
• Training Component Neural Networks: 

- Each bootstrapped dataset is used to train a separate BP ANN topology. 

- The ensemble is created by combining the predictions of individual component neural networks. 

• Combining Predictions: 

- The predictions of individual neural networks are combined to obtain the final ensemble 

prediction. 

- Various techniques can be employed for combining predictions, such as averaging or voting. 

For an ensemble of M neural networks, the final prediction P_final is obtained by averaging the 

predictions Pi of individual networks: 

𝑃𝑓𝑖𝑛𝑎𝑙 =  (
1

𝑀
) ∗  𝛴(𝑖 = 1 𝑡𝑜 𝑀)𝑃𝑖 

 
- Generalization Improvement: 

- The ensemble approach aims to improve generalization by mitigating overfitting and leveraging 

the diversity of component networks. 

- The generalization error (E_generalization) can be expressed as the sum of bias squared 

(E_bias^2), variance (E_variance), and irreducible error (E_irreducible): 

𝐸𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  𝐸𝑏𝑖𝑎𝑠
2 +  𝐸𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 +  𝐸𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 

 
Bagging contributes to managing bias and variance, as it reduces variance by incorporating diverse 

training sets and prevents overfitting. 
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C. SVM: 

Investigating and locating partial discharge (PD) sources using the Support Vector Machine (SVM) 

algorithm involves several steps. Below are the steps along with mathematical equations: 

Step 1: Feature Normalization 

• Normalize the features to ensure that they are on a similar scale. This step is crucial for SVM 

algorithms. 

𝑥′ =
(𝑥 −  𝑚𝑒𝑎𝑛(𝑥))

𝑠𝑡𝑑(𝑥)
 

 
Step 2: SVM Model Training 

• Train the SVM model on the training dataset using the selected kernel function. 

𝑓(𝑥) =  𝑠𝑖𝑔𝑛(𝑤 ⋅ 𝑥 +  𝑏) 

 

Step 3: Model Evaluation 

• Evaluate the SVM model on the testing dataset to assess its performance. 

Step 4: PD Source Localization 

 

• If applicable, use the trained SVM model for localizing the sources of partial discharges. 

Step 5: Model Interpretation 

• Analyze the SVM model to interpret its decision boundaries and gain insights into the features 

contributing to PD detection. 

 

The actual equations for SVM involve terms like support vectors, Lagrange multipliers, and the kernel 

function, which can vary based on the chosen SVM variant (e.g., linear, polynomial, radial basis 

function). 

 

Linear SVM Equation: 

𝑓(𝑥)  =  𝑠𝑖𝑔𝑛(𝑤 ⋅ 𝑥 +  𝑏) 

 
• Here, w represents the weight vector, x is the input feature vector, and b is the bias term. The 

decision boundary is determined by the sign function. 

For non-linear SVM, the decision function involves the kernel trick and support vectors: 

 

𝑓(𝑥) =  𝑠𝑖𝑔𝑛(∑𝑖 = 1 𝑡𝑜 𝑁 𝑦𝑖 𝛼𝑖 𝐾(𝑥𝑖, 𝑥) +  𝑏) 
Where, 

• N is the number of support vectors, yi is the class label, αi is the Lagrange multiplier, xi are support 

vectors, x is the input vector, K(⋅,⋅) is the kernel function, and b is the bias term. 

 

D. RF: 

A thorough method is used in the Random Forest algorithm to find and study partial discharge (PD) 

sources. In the first step, bootstrapped sampling from the dataset is used to make a group of different 

decision trees. Each tree is trained on a different set of traits, which encourages variety. The Random 

Forest uses the results of all of these trees together to improve accuracy and prevent overfitting. The 

Gini defect or entropy criterion is used to measure how important a feature is, which helps find 

important features for PD recognition. The algorithm's built-in parallelism makes training and testing 

go more smoothly. Tuning hyperparameters improves the performance of the forest and makes sure 

it works well in a variety of situations. Random Forest is a strong tool for investigating and locating 

PD sources because it can handle non-linear relationships and give information about which features 

are most important. It works reliably and is flexible in complex electrical systems. 
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Step 1: Data Preparation 

• Prepare the dataset D with PD-related signal features. 

 

Step 2: Ensemble Training 

• Generate B bootstrapped samples from D and train B decision trees Tb with random feature subsets. 

 

Step 3: Ensemble Prediction 

Combine individual tree predictions to form the ensemble prediction Pensemble: 

𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑥) =  (
1

𝐵
) ∑(𝑏 = 1 𝑡𝑜 𝐵)𝑃𝑏(𝑥) 

 
Step 4: Feature Importance 

• Assess feature importance by aggregating measures like Gini impurity or entropy across all trees: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑓) =  (
1

𝐵
) ∑(𝑏 = 1 𝑡𝑜 𝐵)𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑏(𝑓) 

Random Forest's ensemble approach enhances accuracy, handles non-linear relationships, and 

provides insights into influential features for effective PD source investigation. 

 

E. DT: 

The decision tree method uses a tree-like layout of nodes to describe choices based on features and is 

used to find and investigate partial discharge (PD) sources. For PD identification, the tree is trained 

on a set of data, and at each node, a feature is chosen to divide the data into two groups. At each leaf 

node, the choice matches an expected result, which lets us find the sources of PD. The tree is built in 

a looping way, and measures like Gini impurity or entropy are used to find the best feature for 

splitting. Decision trees are great at finding complex links in data and giving us useful information 

about the most important traits for finding PD. But they might be prone to overfitting, which can be 

fixed by trimming or other methods. Because they are clear and easy to use, decision trees are great 

for understanding and looking into PD sources in electrical systems. 

At each node t, the best feature ft is chosen to minimize impurity: 

 

𝑓𝑡 =  𝑎𝑟𝑔𝑚𝑖𝑛 [𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑓, 𝑡)] 
 

The impurity (I) is calculated based on the chosen metric: 

 

𝐼(𝑓, 𝑡)  =  𝛴𝑖 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑝(𝑖|𝑡) ⋅ (1 − 𝑝(𝑖|𝑡)) 
Where,  

• p(i|t) represents the probability of class i at node t. 

Decision trees offer interpretability and insights into influential features for PD detection. Pruning 

techniques can mitigate over-fitting, ensuring robust performance. 

 

Result and Discussion 

 

Table 2 shows a full comparison of all the different ways to find partial discharge (PD), using a range 

of statistical measures and accuracy metrics. We check the mean, standard deviation (SD), skewness, 

kurtosis, variance, and general correctness of each method, such as Random Forest (RF), Support 

Vector Machine (SVM), Decision Tree (DT), Back-propagation Neural Network (BPNN), and 

Ensemble Neural Network (ENN).The mean number for Random Forest (RF) is 0.53, which shows 

the overall success across all the statistical measures that were looked at. Even though RF's accuracy 

of 89.33% is pretty good, its standard deviation of 0.63 shows that performance can vary. A mean of 

0.58 and a standard deviation of 0.33 show that the Support Vector Machine (SVM) performs 
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similarly to other algorithms. With an accuracy of 90.54%, SVM shows that it is a good tool for 

finding PD. 

 

Table 2: Output Comparison with Different method for PD identification 

Method Mean SD Skewness Kurtosis Variance Accuracy 

RF 0.53 0.63 0.86 0.36 0.25 89.33 

SVM 0.58 0.33 0.88 0.45 0.36 90.54 

DT 0.63 0.58 0.78 0.52 0.45 93.14 

BPNN 0.44 0.78 0.88 0.56 0.25 94.25 

ENN 0.78 0.65 0.91 0.66 0.33 97.88 

 

With a mean score of 0.63, Decision Tree (DT) comes out as having better total success. The accuracy 

of 93.14% shows how well DT can pick up on the subtleties of PD trends. The mean number for a 

Back-propagation Neural Network (BPNN) is 0.44, and the standard deviation is 0.78, which is a bit 

higher.  

 

 
Figure 4: Representation of Comparison of Methods with Evaluation Parameters 

 

BPNN, on the other hand, is very accurate (94.25%), which shows that it can learn complicated PD 

patterns through repeated training. With a mean value of 0.78 and an amazing success rate of 97.88%, 

Ensemble Neural Network (ENN) is better than other ways. The lower standard deviation of 0.65 

shows that its success is consistent. Skewness and kurtosis numbers show how the found PD patterns 

are spread out and shaped across all methods. With higher skewness and kurtosis, ENN shows a more 

marked and concentrated distribution, which could help capture complex PD traits well. The 

comparison shows that each way for finding PD has its own pros and cons. Deciding which method 

is best relies on certain factors, like how accurate, consistent, and able to pick up on minor PD traits 

it is. The results show that Ensemble Neural Network (ENN) has a lot of potential, especially when 

it comes to getting high accuracy and recording complex PD patterns. 

Table 3: Comparison of Different method with evaluation parameter 
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Method Accuracy Recollect 
F1-

Outcome 
Assist 

RF 89.33 90.33 89.35 910 

SVM 90.54 97.56 91.25 590 

DT 93.14 98.36 94.56 870 

BPNN 94.25 96.32 97.36 890 

ENN 97.88 98.88 99.12 780 

 

In Table 3, different methods for finding partial discharge (PD) are compared in great depth, with a 

focus on important evaluation factors like memory, accuracy, F1-outcome, and help measures.  

 

 
Figure 5: Representation of Comparison of Different method with evaluation parameter 

 

Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), Back-propagation Neural 

Network (BPNN), and Ensemble Neural Network (ENN) are some of the methods that are evaluated 

based on how well they do in these important areas. The high accuracy of 89.33% achieved by 

Random Forest (RF) shows how well it can correctly spot PD cases. The recall number, which 

measures how well you can find true positives, is currently at 90.33%, which shows that RF is good 

at getting useful information. The F1-outcome score of 89.35% shows that accuracy and memory are 

both about the same, which shows that the method is generally reliable. If the aid measure is 910, it 

means that RF can help with the recognition process. Support Vector Machine (SVM) has a slightly 

higher success rate of 90.54%, which shows how well it does at correctly classifying PD cases. Most 

importantly, the recall of 97.56% shows that SVM is good at finding a lot of true positives. The 

91.25% score on the F1 test shows that accuracy and memory are in good balance. The fact that SVM 

has an assistance measure of 590 shows how helpful it is in the recognition process. 
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Figure 6: Accuracy comparison of different model 

 

With a success rate of 93.14%, Decision Tree (DT) stands out as a very good PD classification tool. 

This shows that DT can catch a lot of true positive cases, as shown by its amazing recall of 98.36%. 

The F1-outcome score of 94.56% shows that DT's performance was strong, with a good mix between 

accuracy and memory. The support measure of 870 shows how well DT helps with the recognition 

process. Back-propagation Neural Network (BPNN) has a high level of accuracy (94.25%), which 

shows that it can accurately identify PD. The high recall rate of 96.32% shows that BPNN is good at 

finding real positive cases.  

 

 
Figure 7: Representation of Characteristic of Neuron using SOM 

 

The F1-outcome score of 97.36% shows that BPNN is generally reliable because it has a good mix 

of accuracy and memory. The aid measure of 890 shows how much BPNN helped with the 

identification process. Ensemble Neural Network (ENN) does a great job with an amazing accuracy 

of 97.88%, showing how well it can accurately identify PD. It's clear that ENN is good at finding a 

lot of true positive cases because its recall rate is 98.88%. The excellent F1-outcome score of 99.12% 

shows a good mix between accuracy and memory, which supports ENN's strong performance.  



Enhanced Techniques for Investigating and Locating Partial Discharge Sources using Machine learning method with 

Self-Organizing Maps, and Back-propagation Neural Networks 
 

73 

Conclusion 

 

Improved methods for investigating and locating partial discharge (PD) sources using machine 

learning techniques, namely Self-Organizing Maps (SOM) and Back-propagation Neural Networks 

(BPNN), have been a big step forward in the field of electrical systems diagnostics. Using artificial 

intelligence (AI) in these methods makes PD cause tracking more accurate and faster. In a low-

dimensional space, self-organizing maps organize complex data in a way that makes it easier to see 

and group PD trends. Fine differences in PD signals can be found because they can catch the natural 

structure in high-dimensional data. Unsupervised learning by the SOM gives useful information about 

where PD sources are located, which helps with the localization process. In contrast, Back-

propagation Neural Networks show that they are good at finding complex patterns and connections 

in the PD data. By using supervised learning, BPNN makes it possible to precisely map input traits 

to output labels, which makes PD detection more accurate. Through a repeated training process, 

BPNN becomes more flexible in dealing with different PD situations, which leads to better source 

localization performance. Combining these two machine learning techniques creates a way that uses 

the best parts of both. An initial grouping and display of the PD data by SOM helps in finding possible 

sources, and BPNN improves the recognition process by learning from cases that have been named. 

The general accuracy and dependability of PD source analysis are improved by this unified method. 

As electrical systems keep changing, sturdy and useful troubleshooting tools become more and more 

important. Using machine learning methods, especially SOM and BPNN together, is a big step toward 

meeting these needs. These methods' improved features suggest a hopeful way to push the limits of 

PD detection and source localization, which would improve the general dependability and life of 

electrical infrastructure. 
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