Research Article Extension Of Semi-Continuous Functions

Dr. M. Sankari^{1*}

Abstract: An attempt is made to analyse the extension of semi-continuous function defined on a closed set.

Key words: closed set, semi-continuous function, lower semi-continuous, upper semi-continuous function.

A function $f: X \to \mathbb{R}$ to be lower semi-continuous if for each real b, $\{x \mid f(X) \le b\}$ is closed. Similarly for $f: X \to \mathbb{R}$ is upper semi-continuous if $\{x \mid f(X) \ge b\}$ is closed for every real b. In this article, an attempt is made to analyse the extensions for semi-continuous functions defined on a closed set.

Let X be an uncountable set endowed with the co-countable topology. Let A be an open subset of X. Then $A = \Phi$ or A = X or $A = B^{C}$ for some countable subset B of X.

Lemma 1

Let X be a uncountable set endowed with co-countable topology. If f is *lsc* on X, then f(X) has maximum.

Proof

Suppose *f* is not bounded above. Then $f^{-1}(n, \infty) \neq \Phi$ for all $n \in \mathbb{N}$, which implies that $f^{-1}(-\infty, n] \neq \Phi$ for all $n \in \mathbb{N}$.

Since f is *lsc*, $f^{-1}(n, \infty)$ is open for all $n \in \mathbb{N}$, $\Rightarrow f^{-1}(-\infty, n]$ is closed for all $n \in \mathbb{N}$.

Since X is the only uncountable closed set, $f^{-1}(-\infty,n]$ is countable for all $n \in \mathbb{N}$.

Clearly X = $f^{-1}(-\infty \infty) = \bigcup_{n \in \mathbb{N}} f^{-1}(-\infty, n]$.

Since countable union of countable set is countable set. X is countable, which is a contradiction to the assumption. Therefore f is a bounded above. Hence, f(X) has maximum.

Example 1

The function f given by $f(n) = n, n \in \mathbb{N}$ on the closed subset \mathbb{N} of \mathbb{R} endowed with the co-countable topology, is *lsc* and it has no *lsc* extension.

Proof

In co-countable topology, open sets are Φ and all complements of countable sets. Now, N is countable. Therefore $\mathbb{R} - \mathbb{N}$ is open. Clearly, the function $f = \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n) = n, n \in \mathbb{N}$ is *lsc*. Suppose $F : \mathbb{R} \rightarrow \mathbb{R}$. Clearly F is not *lsc*, because we cannot find out countable closed subset in \mathbb{R} . *Remarks* Hereafter, A stands for the closed subset of X. **Theorem 1**

Let F be an *lsc* function on A and suppose it is upper bounded on the boundary of A. Then, f has an *lsc* extension F to X. which is upper bounded on X - A, such that $F(X) \subset f(A)$.

Proof

Let $f = A \rightarrow \mathbb{R}$ be the given *lsc* function such that f is upper bounded on the boundary of A. Let $M = Sup \{f(b(a))\}$

Define the function $F = X \rightarrow \mathbb{R}$ as follows:

¹*Assistant Professor in Mathematics, Lekshmipuram College of Arts and Science, Neyyoor-629802 sankarisaravanan1968@gmail.com

 $F(X) = \begin{cases} f(x) \text{ if } x \in A, \\ M \text{ if } x \notin x - A \end{cases}$

We will to prove that F is a *lsc* function on X. Let $a \in \mathbb{R}$. Case (i) Suppose a < M,

Then $F^{-1}((-\infty, a]) = f^{-1}((-\infty, a])$ is closed in A, A is closed in X.

Therefore F is *lsc* on X. Case (ii) Suppose $a \ge M$, Then F⁻¹(($-\infty$, a]) = f⁻¹(($-\infty$, a]) U(X – A) is closed.

Since the boundary b(X - A) of X - A is b(A) which is contained in $f^{-1}((-\infty, a])$, which implies that F is *lsc* on X. Clearly, since A is closed, $b(A) \subset A$.

Therefore $M \in cl(f(A))$, which implies that f(X) C d(f(A)).

Also F: X $f \rightarrow \mathbb{R}$ is upper bounded on X – A.

The converse of the Theorem 1 is false.

Example 2

The *lsc* function F on \mathbb{R} given by F(X) = n if $X \in (n, n+1)$, $n \in \mathbb{Z}$, is an extension of the *lsc* function f defined on the set of integers \mathbb{Z} given by f(n) = n, $n \in \mathbb{Z}$. The boundary $b(\mathbb{Z})$ of Z is \mathbb{Z} and $F(\mathbb{R}) \subset F(\mathbb{Z})$, but f has no upper bound. *Example 3*

Suppose A is regularly closed (i.e. $A = \overline{A}^{\circ}$ and f is *lsc* on X. If $f(A^{\circ})$ is upper bounded, then f(b(A)) is upper bounded.

Proof

Let A be regularly closed and f be *lsc* on X. Suppose f(b(A)) is has no upper bounded.

Since $f(A^{\circ})$ is upper bounded, there exists a real number K such that $f(A^{\circ}) < K$.

By assumption, $f(\mathbf{b}(\mathbf{A}))$ has an upper bound.

Then, there exists $Y \in b(A)$ with f(Y) > K.

Let $M \in \mathbb{R}$ such that K < M < f(Y).

Then b(A) is not contained in the closed set $f^{-1}((-\infty, M])$ which is a contradiction.

Hence, $f(\mathbf{b}(\mathbf{A}))$ is upper bounded.

The following example shows that the condition 'regular closedness' of A, cannot be replaced. *Example 4*

Consider A [0,1] UN. A is a closed but not a regularly closed subset of \mathbb{R} . If $f : \mathbb{R} \to \mathbb{R}$ is the identity function, then $f(b(A)) = f(\mathbb{N})$ has no upper bound. But f(A) is bounded.

Theorem 2

Suppose A is regularly closed and f is *lsc* on A. If f has an *lsc* extension F to X which is upper bounded on X – A, then f is upper bounded on b(A).

Proof

Let f be the given lsc on A and A be regularly closed. Suppose $F : X \to \mathbb{R}$ is lsc which is bounded on X - A. To show that f is upper bounded on b(A). Suppose F(X - A) has an upper bound. Let $C (\bar{X} - \bar{A})$. Then C is closed such that $C^\circ = X - A$ and so $\overline{C}^\circ = \overline{X} - \bar{A} = C$, which implies that C is regularly closed. Now $b(C) = b (\bar{X} - \bar{A}) = b (X - A) = b(A)$. Hence, $b(C) = b(C^\circ) = b(A)$. By assumption, $F(C^\circ)$ is upper bounded. By Lemma, F(b(C)) is upper bounded. Therefore F(b(A)) is upper bounded. Hence, f is upper bounded onb(A).

Theorem 3

Let X be a normal space and C a dense subset of the closed set A. Let f be an *lsc* function on A. Suppose f_c is continuous and suppose it admits a continuous extension g to A. Then, f has an *lsc* extension F to X which is continuous in the points of X – A.

Proof

Let $f : A \rightarrow \mathbb{R}$ be the given *lsc* function where A is closed. Suppose f_c admits a continuous extension g to A.

Then by Tietze's extension theorem, we can consider the continuous extension G of g to X.

Now, define $F: X \rightarrow \mathbb{R}$ by

 $\mathbf{F}(\mathbf{X}) = \begin{cases} G(X) & if \ X \in X - A \\ f(X) & if \ X \in A \end{cases}$

To show that F is *lsc* on X.

By Theorem 1, g is the lower regulated function of f relative to C and so, for each X in C.

 $f(\mathbf{X}) \le g(\mathbf{X})$

Let $X \in A$ and $\varepsilon > 0$

Since f is *lsc* on A, there exists a neighbourhood V of X such that $f(z) > f(X) -\varepsilon$, for each $z \in \cap A$.

Also G is continuous then there exists a neighbourhood T of X with $G(Z) > g(X) - \varepsilon$, for each $z \in T$.

Let $H = T \cap V$. Then H is a neighbourhood of X.

Case (i)

If $z \in A$ then $Z \in V \cap A$. Therefore by (1), $F(z) = f(z) > f(X) - \varepsilon$.

Case (ii)

If $Z \in X - A$.

Then $F(Z) = G(Z) > g(X) - \varepsilon$ $\geq f(X) - \varepsilon$.

Therefore $F(z) = f(z) > f(X) - \varepsilon$, for each $z \in H$. Thus in each case $F(z) > f(X) + \varepsilon$ for each $X \in H$. Hence, F is *lsc* on A

(a)

(b)

Now, Let $X \in X - A$ and $\varepsilon > 0$

Then there exists a neighbourhood U of X contained in X – A. Such that $F(Z) \in (G(X) - \varepsilon, G(X) + \varepsilon)$ for each $Z \in U$.

Therefore F is continuous at $X \in X - A$. Since X is arbitrary, F is continuous on X - A.

This implies that F is *lsc* on X - A

From (a) and (b), F is *lsc* on X.

References

- 1. Ferrer, J: Gregori, V. (1995). Extension of Semi-continuous function. Indian Journal of Rise and Applied Mathematics, 26(3), 103-112.
- 2. Kosman, J. (2019). Extension of semicontinous and quasi-continuous from dense subspaces. *Questions Mathematicae*, 43(10), 1385-1390.
- 3. Michael, E. (1953). Some extension theorem for continuous function. *Pacific Journal of Mathematics*, 3(4), 789-810.
- 4. Darwesh, H.M. (2011). A new type of semi-open sets and semi-continuity in topological space. *Journal of Pure and Applied Science*, 23(2), 82-84.