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Abstract 

 

An acyclic coloring is a proper vertex coloring in which no cycle in the graph is bichromatic 

or the subgraph induced by any two colors is acyclic. The acyclic chromatic number a(G) of a 

graph G is the least number of colors in an acyclic coloring of G. In this paper, acyclic 

coloring of middle and central graph of some graphs are investigated. For any graph G, a 

relation between the acyclic chromatic number and acyclic chromatic index of its line graph 

is derived, and using this relation, acyclic chromatic index of line graph of n -dimensional 

graphs like hypercube, mesh and torus are analyzed. 
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Introduction 

 

Proper coloring is an assignment of colors to the vertices (or edges), such that no adjacent 

vertices (or edges) receive the same color. The least number of colors required for the proper 

coloring is termed as the chromatic number (index). A proper vertex (or edge) coloring of a 

graph G, is said to be acyclic if it does not contain any bichromatic cycles in it. The minimum 

number of colors required for an acyclic coloring is referred as the acyclic chromatic number 

a(G) (in case of a vertex coloring), and acyclic chromatic index a'(G) (in case of an edge 

coloring). The concept of acyclic coloring, acyclic chromatic number, and star coloring was 

introduced by Grunbaum [4] in 1973 and mainly studied by Albertson [1], Borodin [2], and 

amongst others. In 1978 A.V. Kostochka [6] proved in his thesis that, deciding whether if the 

acyclic chromatic number of G is at most k is an NP-complete problem for a given G and k. 

There exist numerous types of operations on graphs, like graph union, graph intersection, 

graph join, graph sum, graph product, etc., which are generally named as binary operations 

on graphs. While there are some other types of operations, called unary operations on graph. 

Some examples for unary operations on a graph are the complement of a graph, power of a 

graph, line graph of a graph, middle graph of a graph, total graph of a graph, splitting graph 

of a graph, central graph of a graph, etc. Other operations of this kind can be found in Harary 

and Wilcox [5]. T. Hamada and I. Yoshimura in 1974 [8] introduced the concept of middle 

graph. In [17] M. Behzad has introduced the notions of the total chromatic number and the 

total graph of a graph. In 1932 H. Whitney introduced the concept of a line graph. Acyclic 

coloring of middle, total and line graph of some particular graphs have been studied by some 

authors, but no work has been done in the case of a general graph. Note that the middle and 

total graph of G are generalization of line graph of G. Vernold Vivin. J et al. [14] introduced 

the concept of central graph. 

Let G = (V, E) be a graph. The middle graph [8] M(G) of G, is the graph with the vertex set 

𝑉(𝐺) ∪ 𝐸(𝐺) in which two vertices 𝑥, 𝑦 ∈ 𝑉(𝑀𝐺) are adjacent in M(G), only if (i) 𝑥, 𝑦 ∈

𝐸(𝐺) and x, y are adjacent in G. (ii) x ∈ V(G), y ∈ E(G) and x, y are incident in G. Let G be a 

finite undirected graph with no loops and multiple edges. A graph obtained by partitioning 

each edge of G exactly once and connecting all the non-adjacent vertices of G using edges is 

called a central graph [14] C(G) of G. The line graph [15] L(G) of G is the intersection graph, 

where the points of L(G) are the lines of G, with two points of L(G) are adjacent whenever 

the corresponding lines of G are. Consider the graph G, with vertex set 𝑉(𝐺) =
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{𝑣1, 𝑣2, … , 𝑣𝑝} and the edge set 𝐸(𝐺) = {𝑒1, 𝑒2, … , 𝑒𝑞}. To the graph G, we add 𝑝 new 

vertices and 𝑝 new edges {𝑢𝑖, 𝑣𝑖}(𝑖 = 1,2, … , 𝑝), where 𝑢𝑖′𝑠 are different from any vertex of 

G and from each other. Then we a obtain new graph called Endline graph [8] of G, denoted 

by 𝐺+ = (2𝑝, 𝑝 + 𝑞) with vertex set 𝑉(𝐺+) = {𝑢1, 𝑢2, … , 𝑢𝑝, 𝑣1, 𝑣2, … , 𝑣𝑝} and edge set 

𝐸(𝐺+) = 𝑒1, 𝑒2, … , 𝑒𝑞 , {𝑢1, 𝑣1}, {𝑢2, 𝑣2}, … , {𝑢𝑝, 𝑣𝑝}}. An n-wheel 𝑊𝑛 [16] is the graph 

obtained by connecting all the vertices of an n- cycle 𝐶𝑛 to one other vertex, called the hub. 

The newly added edges are called spokes. The wheel graph 𝑊𝑛 is isomorphic to the graph 

sum 𝐾1+𝐶𝑛.The wheel graph 𝑊𝑛 has 𝑛2 − 𝑛 + 1 graph cycles in it. The helm graph Hn, is the 

graph we received from an n-wheel by adding a pendant edge at each vertex of the cycle. The 

Flower graph Fn is the graph obtained from the helm graph Hn, by adding edges between all 

the pendant vertices and the central vertex. Note that both the flower graph and helm graph 

are defined only for 𝑛 ≥ 3. 

The concept of acyclic edge coloring of a graph was introduced by B. Grunbaum [4]. Even 

for most common class of well-known graphs, the estimation of 𝑎′(𝐺) is not yet decided 

exactly. Alon, Sudakov, and Zaks [13] proved that 𝑎′(𝐺) ≤ ∆ + 2 for almost all ∆ - regular 

graphs. Nesetril and Wormald [12] improved this result and showed that for a random ∆- 

regular graph 𝑎′(𝐺) ≤ ∆ + 1. Alon et al. [21] designed an algorithm that can acyclically edge 

color the complete graph Kp, even though finding the exact values of 𝑎′(𝐾𝑛) for every n 

seems hard. Through this work, they constructively showed that 𝑎′(𝐾𝑝) = 𝑝. An n-

dimensional partial torus [20] is a connected graph G whose unique prime factorisation is of 

the form G= 𝐺1 ⊡ 𝐺2 ⊡ 𝐺3 … ⊡ 𝐺𝑛, where 𝐺𝑖 ∈ PATHS ∪  CYCLES, for each 𝑖 ≥ 𝑛. Let 𝒫𝑛 

represents the class of such graphs. Then, G is an n-dimensional hypercube  𝐾2
𝑛, if each prime 

factor of G ∈ 𝒫𝑛 is a 𝑃2. G is an n-dimensional mesh ℳ𝑛, if each prime factor of G ∈ 𝒫𝑛 is 

from PATHS. G is an n-dimensional torus 𝒯𝑛, if each prime factor of G ∈ 𝒫𝑛 is from 

CYCLES. 

In this paper, acyclic coloring of middle and central graph of some graphs are examined and 

acyclic chromatic numbers of these graph operations are obtained. With respect to a coloring 

c, a new concept called acyclically feasible set is introduced, and aslo, some close bounds are 

attained using endline graph of a graph. The edge coloring of G and the vertex coloring of 

L(G) are always equivalent. Hence while taking all types of coloring into account, the 

chromatic index of G will be equal to the corresponding version of the chromatic number of 

L(G). But the situation is different when we consider the chromatic index of the line graph of 

G. Here the isomorphism need not exists in general, including for the case of acyclic 
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coloring. In [19], it has been proved that, in the case of 3 consecutive coloring, the vertex 

coloring of G and the corresponding edge coloring of L(G) coincide. That is, χ3𝑐(G) =

χ′
3𝑐

(L(G)). It is a subtle coincidence, as it does not hold for most of the other types of 

colorings. Here in the case of acyclic coloring, we will prove an inequality. 

Throughout this paper graphs means simple connected graphs. In figures the symbol i 

represents the color c𝑖. 

 

Preliminaries 

 

Theorem 2.1. [7] For any graph G, 𝑎′(𝐺) ≤ 4∆(𝐺) − 4. 

Theorem 2.2. [8] Let G be any graph. Then L(G+) is isomorphic to the middle graph M(G). 

Theorem 2.3. [9] For a flower graph 𝐹𝑛, 𝑛 ≥ 5, the star chromatic number of M(Fn) is 

χ𝑠(M(F𝑛)) = 2𝑛 + 1. 

Theorem 2.4. [22] For the graph K1,𝑛, 

(i). 𝑎(M(K1,𝑛)) = 𝑛 + 1. 

(ii). 𝑎(T(K1,𝑛)) = 𝑛 + 1. 

Proposition 2.5. [4] For an arbitrary graph G, χ(G) ≤ 𝑎(𝐺) ≤ χ𝑠(G). 

Proposition 2.6. [8] Let 𝑀(𝑊𝑘) be the middle graph of the wheel graph 𝑊𝑘. Then in 𝑀(𝑊𝑘), 

the hub together with the spokes constitute a clique of order n +1. 

Proposition 2.7. [10, 11] Let G be any graph and L(G) denotes line graph of G. Then, 

1. L(G) is connected whenever G is connected 

2. If υ(G) = 𝑛, ε(G) = 𝑚 and vertex degree are 𝑑𝐺(v), then υ(L(G)) = 𝑚 and ε(L(G)) =

1

2
∑ d𝐺

2 (v) − 𝑚𝑛
𝑖=1  

3. χ′(G) = χ(L(G)) 

4. G1 ≅  G2 ⇒ L(G1) ≅  𝐿(G2), but the converse is not true 

5. Cycles are the only graphs, for which 𝐿(𝐺) ≅ 𝐺 

6. For path graphs 𝑃𝑛, 𝑛 ≥ 1 the line graph 𝐿(𝑃𝑛) = 𝑃𝑛−1 

7. The line graph of a regular graph is regular; however the converse is not true. ( Eg 𝐾1,3 is 

not regular, but 𝐿(𝐾1,3) is regular) 

8. The line graph of a Eulerian graph is both Eulerian and Hamiltonian 

 

Theorem 2.8. [12] 𝑎′(G) ≤ 𝑑 + 1 for almost every d-regular graph. 

Conjecture 2.9. [13] For any graph G, 𝑎′(𝐺) ≤ ∆(𝐺) + 2. 
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Theorem 2.10. [20] (i) For an n-dimensional hypercube 𝐾2
𝑛, 𝑛 ≥ 2 the acyclic chromatic 

index 𝑎′(K2
𝑛) = ∆(K2

𝑛) + 1. (ii) For an n-dimensional torus 𝑇𝑛, 𝑛 ≥ 1 the acyclic chromatic 

index 𝑎′(𝑇𝑛) = ∆(𝑇𝑛) + 1. (iii) For an n dimensional mesh 𝑀𝑛, 𝑛 ≥ 1 the acyclic chromatic 

index 𝑎′(𝑀𝑛) = ∆(𝑀𝑛). 

Proposition 2.11. For any graph G, 𝑎′(𝐺) = 𝑎(𝐿(𝐺). 

 

Acyclic chromatic number of middle and central graphs 

 

Definition 3.1. Let G = (V, E) be a graph and NG(v) be the neighbor set of the vertex v ∈ V in 

G. Let 𝑐: 𝑉(𝐺) → 𝐶 be a proper vertex coloring of G, where C is the set of colors. If the 

function c satisfies 𝑐(𝑥) ≠  𝑐(𝑦) for every 𝑥, y ∈  𝑁𝐺(𝑣), then we say that the vertex v is an 

acyclically feasible vertex with respect to the coloring c. The set of all such vertices is called 

an acyclically feasible set w. r. t the coloring c. 

Example 3.2. For a complete graph 𝐾𝑛, every set 𝑆 ⊆ 𝑉(𝐾𝑛) is an acyclically feasible set w. 

r. t any proper coloring c. 

Proposition 3.3. Let G = (V, E) be a graph and S ⊆ V be an acyclically feasible set w. r. t  a 

coloring c of G. Then no bichromatic cycle is possible through any member of S. 

Proof. The vertex v has a chance to become a part of a possible bichromatic cycle w. r. t  a 

coloring c, only if we are able to enter v from a vertex x and exit v to another vertex y with 

c(x) = c(y). But, by the definition of acyclically feasible set, no elements of S possess this 

property. 

Theorem 3.4. For any non-empty graph G, 𝑎(𝑀(𝐺)) ≤ 4∆(𝐺) − 4. 

Proof. Let 𝑀(𝐺) denotes the middle graph of the graph G. Let us define an acyclic edge 

coloring c: E(G) → C for G, by using at most ∆(G) + 2 colors. Let 𝑣 ∈ 𝑉(𝐺) with 𝑑𝑒𝑔𝐺(𝑣) ≤

∆(𝐺), then all the edges incident with the vertex v can be acyclically edge colored by at most 

∆(G) colors. Form the endline graph 𝐺+of 𝐺. Then the degree of each vertex of G will be 

increased by one. That is 𝑑𝑒𝑔𝐺+(𝑣) ≤ ∆(𝐺) + 1. Now we choose a color 𝑐1 or 𝑐2 ∈ 𝐶, 

different from the ∆(G) colors and assign it properly to all the endlines of 𝐺+. Then it results 

in an acyclic edge coloring of 𝐺+with at most ∆(G) + 2 colors, as no bichromatic cycle is 

possible through the endlines. Now by using Theorem 2.1 and the inequality ∆(G) + 2 ≤ 

4∆(G) − 4 we have 𝑎′(𝐺+) ≤ 4Δ(𝐺) − 4, that is, 𝑎(L((𝐺+) ≤ 4Δ(𝐺) − 4. Hence by 

Theorem 2.2, 𝑎(𝑀(𝐺)) ≤ 4∆(𝐺) − 4. 

Remark 3.5. If a(L(G)) ≥ ∆(G) + 2, then a(M(G)) ≤ a(L(G)).  
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Theorem 3.6. For a flower graph 𝐹𝑛,  𝑎(𝑀(𝐹𝑛)) = ∆(𝐹𝑛) + 1. 

Proof. From the definition of flower graph, we have ∆(𝐹𝑛) = 2𝑛. 

Case 1. 𝑛 ≥ 5 

From Theorem 2.3 and Proposition 2.5, we have 

𝑎(𝑀(𝐹𝑛)) ≤ 2𝑛 + 1 , for 𝑛 ≥ 5   (3.1)  

Since the flower graph 𝐹𝑛 contains the star graph 𝐾1,2𝑛 as subgraph, the corresponding middle 

graphs satisfy the relation 𝑀(𝐹𝑛) ⊇ 𝑀(𝐾1,2𝑛). Therefore 𝑎(𝑀(𝐹𝑛)) ≥  𝑎(𝑀(𝐾1,2𝑛)). By 

Theorem 2.4(1), we have, 𝑎 (𝑀(𝐾1,2𝑛)) = 2𝑛 + 1. 

That is, 

 𝑎(𝑀(𝐹𝑛)) ≥ 2𝑛 + 1      (3.2) 

Hence we can conclude that, 𝑎(𝑀(𝐹𝑛)) = 2𝑛 + 1 = ∆(𝐹𝑛) + 1. 

Case 2: for 𝑛 = 3,4 

Since the equation (3.1) is true only for n ≥ 5, we have to prove the theorem for n = 3,4 

seperatly. Here we define a coloring c for M(Fn) using the color set C = {c1, c2, … , c2n+1} 

n = 3,4 as follows. In the middle graph M(Fn), the central vertex and its neighboring 2n 

vertices constitute a clique of order 2n+1, which need exactly 2n+1 colors for its proper 

coloring and it is the minimum requirement also. Now the color assigned to the central vertex 

is given to all the pendant vertices corresponding to the original graph Hn. (See the Figure 1, 

a helm graph, flower graph and middle graph of the flower graph are shown). Let S denotes 

the set of vertices in M(Fn) other than the above mentioned vertices. These vertices are 

colored using the above 2n + 1 colors properly such that the adjacent vertices in the set S 

receive different colors. Thus all the vertices are properly colored with the color set C. By 

Proposition 3.3, we can remove the acyclically feasible sets from the middle graphs, which 

lead to the conclusion that the coloring c is acyclic. Thus a(M(Fn)) = 2n + 1. 

 

 

Figure 1: A helm graph H3, flower graph F3, and M (F3)) 

 

Theorem 3.7. For a wheel graph 𝑊𝑛, 𝑎(𝑀(𝑊𝑛)) = ∆(𝑊𝑛) + 1, for 𝑛 ≥ 4. 
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Proof. Consider a wheel graph 𝑊𝑛 having 𝑛 + 1 vertices.  

Let the vertex set be 
( )nV W

= 1 2 3 1{ , , ,... , }n nv v v v v +  which are pointed in counter clockwise 

direction as depicted in Figure 2, with 1nv +  as the hub. Then the hub of the wheel graph is the 

maximum degree vertex with ∆= 𝑛. In the middle graph 𝑀(𝑊𝑛), n-new vertices, say 𝑣𝑖𝑗, 1 ≤

𝑖, 𝑗 ≤ 𝑛 are formed on the edges of the cycle, and another n-vertices on the spokes.  Note that 

by Proposition 2.6 the hub together with its neighboring spoke vertices constitute a clique of 

order n + 1, which requires exactly n + 1 colors for its proper coloring so that 𝑎(𝑀(𝑊𝑛)) ≥

𝑛 + 1. Let the n-spoke vertices corresponding to the vertices  𝑣𝑖  be colored using  𝑐𝑖, 1 ≤

𝑖 ≤ 𝑛 continuously in anti-clockwise direction and the hub by the color cn+1.   Now we color 

the remaining vertices using the above used n + 1 colors itself as follows. The n-vertices in 

𝑀(𝑊𝑛) corresponding to the n-cycle of 𝑊𝑛 are assigned the same color as that of the hub. 

Finally the colors   𝑐𝑖, 1 ≤ 𝑖 ≤ 𝑛 are assigned continuously in anti-clockwise direction for the 

remaining vertices  𝑣𝑖,𝑗. Now it can be observed that the subgraph induced by any two color 

is a forest. Also the coloring is minimum. Thus 𝑎(𝑀(𝑊𝑛)) = 𝑛 + 1 = ∆ + 1, for 𝑛 ≥ 4. 

 

 

Figure 2: A wheel graph 𝑊5  and an cyclic coloring of 𝑀(𝑊5) 

 

Remark 3.8. 𝑎(𝑀(𝑊3)) = 5. 

The coloring in the proof of Theorem 3.7, is not good for 𝑀(𝑊3) as it constitute bichromatic 

cycles in 𝑀(𝑊3). Also no acyclic 4−coloring can be defined for 𝑀(𝑊3). The Figure 3 

explains an acyclic 5− coloring of 𝑀(𝑊3). 
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2 

 

Figure 3: An cyclic coloring of 𝑀(𝑊3) 

 

Corollary 3.9. For the helm graph 𝐻𝑛, 𝑎(𝐿(𝐻𝑛)) ≤ ∆(𝐻𝑛) + 1, for 𝑛 ≥ 3. 

Proof. When n ≥ 4, by Theorems 2.2 and 3.7, we have 𝑎(𝐿(𝑊𝑛
+)) = 𝑎(𝑀(𝑊𝑛)) = ∆(𝐻𝑛) +

+1 (since ∆(W𝑛) = ∆(𝐻𝑛) for n ≥ 4). Also by definition, the helm graph 𝐻𝑛 ⊆ 𝑊𝑛
+, hence 

we get 𝑎(𝐿(𝐻𝑛)) ≤ ∆(𝐻𝑛) + 1. When 𝑛 = 3, by Remark 3.8, we have 𝑎(𝐿(𝐻3)) ≤

𝑎(𝐿(𝑊3
+)) = 5 and also ∆(𝐻3) = 4. Thus for 𝑛 ≥ 3, 𝑎(𝐿(𝐻𝑛)) ≤ ∆(𝐻𝑛) + 1. 

Example 3.10. Two Counter Examples. In [18], it was proved that, for the central graph of a 

complete graph 𝐾𝑛, n ≥ 3, 𝑎(𝐶(𝐾𝑛)) =
𝑛

2
+ 1, if n is even and 𝑎(𝐶(𝐾𝑛)) = ⌊

𝑛

2
⌋ + 2, if n is 

odd. But here we give two counter examples for the above results with an acyclic coloring 

and then in Theorem 3.11 we will prove that 𝑎(𝐶(𝐾𝑛)) is a fixed number for any n ≥ 3. 

Case 1. When n is odd. 

Consider the central graph of 𝐾5. We have given one acyclic coloring c of 𝐶(𝐾5) using 3 

colors as depicted in Figure 4. Let S be the acyclically feasible set of veritces, with respect to 

the coloring c, which are marked inside squares in Figure 4. Then by Proposition 3.3, no 

bichromatic cycle is possible through vertices of S. Let 𝐶(𝐾5) − 𝑆  denotes the graph 

obtained by removing each vertex of S and all associated incident edges from 𝐶(𝐾5). From 

the Figure 4 it is clear that in 𝐶(𝐾5) − 𝑆, all the subgraphs induced by any two colors is a 

forest. Thus 𝑎(𝐶(𝐾5)) = 3 ≠ ⌊
5

2
⌋ + 2. 

Case 2. When n is even. 

Consider the central graph of 𝐾6, we have given one acyclic coloring c of 𝐶(𝐾6) using 3 

colors as depicted in Figure 5. As explained in case 1, we can conclude that, 𝑎(𝐶(𝐾6)) =

3 ≠
6

2
+ 1.  
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Figure 4: Graph of 𝐶(𝐾5) and 𝐶(𝐾5) − 𝑆 

 

 

Figure 5: Graph of 𝐶(𝐾6)  and 𝐶(𝐾6) − 𝑆 

 

Theorem 3.11. For the central graph of  𝐾𝑛, 𝑎(𝐶(𝐾𝑛)) = 3 for 𝑛 ≥ 3. 

Proof.  Let 𝑉(𝐾𝑛) = {𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛}. Let vhk, 1 ≤ ℎ < 𝑘 ≤ 𝑛 be the newly introduced 

vertices of 𝐶(𝐾𝑛). Consider a coloring c using the color set 𝐶 = {c1, c2, c3}. We color the 

vertices of 𝐶(𝐾𝑛) in two cases. 

Case 1: Coloring of the vertex set V. 

Assign the colors 𝑐𝑖 ∈ 𝐶 continuously and cyclically in anti-clockwise direction to the vertex 

set V. 

Case 2: Coloring of the newly introduced vertices. 

Let S be the acyclically feasible set of vertices in 𝐶(𝐾𝑛). For the elements in S there is only 

one possible color assignment, which will not cause any bichromatic cycle in 𝐶(𝐾𝑛). Now let 

us remove the set S from 𝐶(𝐾𝑛). The new subgraph 𝐶(𝐾𝑛)-S obtained will be always the 

union of paths P3 or even cycles and the maximum length of such cycles will be 2 ⌈
𝑛

3
⌉. Since 

the newly introduced vertices are not adjacent to each other, each of the even cycle can be 

acyclically 3 colored. Thus, 𝑎(𝐶(𝐾𝑛)) = 3 for 𝑛 ≥ 3. 

 

Acyclic edge coloring of graphs 

 

Theorem 4.1. For any connected graph G with the number of vertices at least 4, 𝑎(𝐺) ≤

𝑎′(𝐿(𝐺)). 

Proof.  Case 1.  If G is a cycle, then by Proposition 2.7 (5), 𝑎(𝐺) = 𝑎′(𝐿(𝐺)) = 3. 
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Case 2. If G is a path Pn, then by Proposition 2.7 (6), the equality 𝑎(𝐺) = 𝑎′(𝐿(𝐺))  holds.  If  

G  is  a  tree  having  branches  and  sub  branches,  then  υ(G)  = ε(G) + 1 and a(G) =2. Since 

line graph of a tree can be a tree or a cyclic graph, we have 𝑎′(𝐿(𝐺)) ≥ 2, which gives 

𝑎(𝐺) ≤ 𝑎′(𝐿(𝐺)). 

Case 3. If G is connected, which is neither a tree nor a cycle, we have 

υ(G) ≤ ε(G). 

⇒ υ(G) ≤ ε(G) = υ(L(G)) ≤ ε(L(G)). 

Also, 𝑎′(L(G)) = a(L2(G)) ≥ a(G). 

Thus we can conclude that, for any graph G, a(G) ≤ 𝑎′(L(G)). 

Remark 4.2. In the case of the complete graph K4, the strict inequality holds. Here a(K4) = 4 

and 𝑎′(L(K4)) = 5. 

Now we find upper bound for the acyclic chromatic number of line graphs of n-dimensional 

hypercube  𝐾2
𝑛 (n ≥ 2), n-dimensional torus 𝑇𝑛 (n ≥ 1), and n-dimensional mesh 𝑀𝑛. 

Proposition 4.3. Let  𝐾2
𝑛, 𝑇𝑛 and 𝑀𝑛 respectively denote the n-dimensional graphs 

hypercube, torus and mesh. Then 

1) For 𝑛 ≥ 1, the line graph L(𝐾2
𝑛) has the number of vertices υ(𝐿( 𝐾2

𝑛 )) = ε( 𝐾2
𝑛) and 

number of edges ε(L( 𝐾2
𝑛)) = 2𝑛−1(𝑛2 − 1) − 2. ε( 𝐾2

𝑛−1) and it is a 2(n − 1) 

regular graph. 

2) For 𝑛 ≥ 1, the line graph 𝐿(𝑇𝑛) is an 4n − 2 regular graph. 

3) For each path factor is of length at least four in the mesh 𝑀𝑛, Δ(𝐿(𝑀𝑛)) = 4𝑛 − 2. 

Proof. It is familiar that, in a line graph 𝐿(𝐺 ), for each vertex 𝑒 ∈ 𝑉(𝐿(𝐺 )), corresponding 

to the edge 𝑢𝑣 in 𝐺, 

 degL(G)(e) = |𝑁𝐺(𝑢) | + |𝑁𝐺(𝑣) | − 2                      (4.1) 

1) Note that  𝐾2
𝑛 is an n-regular graph with υ( 𝐾2

𝑛 ) = 2𝑛 and ε( 𝐾2
𝑛) = 2. ε( 𝐾2

𝑛−1) +

2𝑛−1, for 𝑛 ≥ 1. Then by property 2.7(2), we get υ(𝐿( 𝐾2
𝑛 )) = ε( 𝐾2

𝑛) and 

ε(L( 𝐾2
𝑛)) = 2𝑛−1(𝑛2 − 1) − 2. ε( 𝐾2

𝑛−1). By equation 4.1, we get 𝑑𝐿( 𝐾2
𝑛)(𝑣) =

2𝑛 − 2. Thus 𝐿( 𝐾2
𝑛 ) is a 2(𝑛 − 1) regular graph. 

2) Since 𝑇𝑛 is 2n-regular graph, by equation 4.1, we get 𝑑𝐿(𝑇𝑛)(𝑣) = 4𝑛 − 2 for every 

vertex of 𝐿(𝑇𝑛). 

3) Since in 𝑀𝑛, each path is of length at least four, there will be at least two vertices of 

maximum degree 2𝑛. So by equation 4.1, we get Δ(𝐿(𝑀𝑛)) = 4𝑛 − 2.  



A Note On Unary Operatıons On Graphs And Theır Acyclıc Colorıng 

 

59 

Theorem 4.4. Let  𝐾2
𝑛, 𝑇𝑛 and 𝑀𝑛 respectively denote the n-dimensional graphs hypercube, 

torus and mesh. Then 

1) 𝑎( K2
𝑛) ≤ 2𝑛 − 1, for 𝑛 ≥ 2 

2)  𝑎(T𝑛) ≤ 4𝑛 − 1, for 𝑛 ≥ 1 

3) For 𝑀𝑛 with each path factor is of length at least four,  𝑎(𝑀𝑛) ≤ 4𝑛. 

Proof. 

1) Since  L(𝐾2
𝑛) is a 2(n − 1) regular graph, by Theorem 2.8 we have 𝑎′(L( K2

𝑛)) ≤

2𝑛 − 1. By Theorem 4.1, we get 𝑎( K2
𝑛) ≤ 2𝑛 − 1. Note that 𝑎( K2

1) = 2. 

2) Since 𝐿(𝑇𝑛) is a (4n − 2) regular graph, by Theorem 2.8 we can write 𝑎′(𝐿(𝑇𝑛)) ≤

4𝑛 − 1. Also by Theorem 4.1, we get 𝑎(𝑇𝑛) ≤ 4𝑛 − 1. 

3) Since Δ(𝐿(𝑀𝑛)) = 4𝑛 − 2, by Conjecture 2.9, we have 𝑎′(𝐿(𝑀𝑛) ) ≤ 4𝑛. Now by 

using the Theorem 4.1, we get 𝑎(𝑀𝑛) ≤ 4𝑛. 

The following remark is obtained from Theorem 2.10 and Propositions 2.11 and 4.3. 

Remark 4.5. Let  G1 = L(𝐾2
𝑛) with 𝑛 ≥ 2, G2 = 𝐿(𝑇𝑛) with 𝑛 ≥ 1and G3 = 𝐿(𝑀𝑛) with 

each path factor is of length at least four. Then 𝑎(G𝑖) =
∆(G𝑖)

2
+ 2 for 𝑖 = 1,2 and 𝑎(G𝑖) =

∆(Gi)

2
+ 1 for i = 3. 

 

Conclusion 

 

In this chapter, the acyclic chromatic number of the unary operations like middle graph, line 

graph and central graph of some graphs are studied. A relation betwen the acyclic chromatic 

number of G and acyclic chromaic index of L(G) is established. The acyclic chromatic index 

of the line graph of n-dimensional partial torus is obtained. 
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