
Certain Exploration of Code Smell Empathy and Refinement Employing Random Decision Forest

Classifier

703

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 6, June 2021: 703-713

Certain Exploration of Code Smell Empathy and Refinement Employing

Random Decision Forest Classifier

M.Sangeetha a*, Dr.C.Chandrasekar b

a* Research Scholar, Department of Computer Science, Periyar University, Salem-11
b Professor, Department of Computer Science, Periyar University, Salem-11

*Corresponding author: mslion2010@gmail.com, ccsekar@gmail.com

Abstract

All through the changes in the source code there might be anmanifestation of smell. Fowler calls as a Bad Smell

which is the symbols of potential problem in the code that may necessitate a refactoring. Inexperienced software

felt challenging to resolve the bad smells even with the help of refactoring tools. The intention is that the

developers don’t know where to invoke the refactoring tools and how to choose the refactoring tools for

identifying various code smells. For this projected a framework to perform refactoring promptly. By this the

developer may refactor the bad smells and resolves them promptly. Refactoring is a well-established practice

that aims at improving the internal structure of a software system without changing its external behavior.

Existing literature provides evidence of how and why developers perform refactoring in practice. In this

proposed work to continue on this line of research by support the MICA-GRDFC technique is more capable and

operative than state of the art refactoring techniques practices in 200 open source systems..

Keywords: Software code smell, Smell identification, Smell rectification, Random tree forest classifier, Cost

optimization

1. Introduction

In contemporary days, there are number of automated tools and methods obtainable for detected code smells

in exercise. Developers or software engineers are little bit potential to handle these automated tools. Refactoring

tools are used to improve the performance of software. Code smells are the chaotic problem in software system

which condenses the software quality. A monitor-based instant refactoring structure was introduced for

detecting and avoidsquantity of code smells in source code. However, the framework has enormousconservation

cost and miscarried to recover software quality. A parallel Evolutionary algorithm (P-EA) was developed to

detect code-smells popular software system. However, the automatic correction of code-smells persistednot

considering now. A flexible and lightweight technique was presented for detecting and showing the code smells

from multiple software languages. But, this technique does not detect dissimilar types of code smells. Several

linear regression analyses were accomplished for examining the association between codes smells as well as

code size with less conservation efforts. However, it failed to focus on software code size for obtaining less

maintenance effort.An effective clone detection technique was introduced using three different tools and

examines the refactoring on various software quality metrics. But, the method was not analyzed several code

smells on the system and check their occurrences before and after refactoring. A new algorithm was designed

for automated detection of refactoring process to the strategy design model. But,the false positive rate was not

reduced during the refactoring. A genetic algorithm-based approach was introduced for refactoring the code

smell of component-based software. But, it failed to use multi-objective optimizations to improve the

mailto:mslion2010@gmail.com

M.Sangeetha , Dr.C.Chandrasekar

704

performance of refactoring. A reliable and efficient method was developed for automatically evaluate the

software clones refactoring. However, it has high computation cost for refactoring. A new technique was

introduced for refactoring the package construction of object oriented software. However, it failed to use more

refactoring technique for rectify the code smells in source code. An automated technique was developed for

detecting refactoring with cost effective in object-oriented software. However, it failed to consider the different

types of code smell and it was not efficient to select the best refactoring to replace code smell. The certain issues

are identified from above said existing methods such as, high false positive rate, computation cost and lack of

code-smells rectification, failed to select best refactoring technique, more effort to maintain software code and

so on. This proposal work introduced Multivariate independent component analysis and generalized random

decision forest classifier technique (MICA-GRDFC). MICA-GRDFC creates two contribution of our proposal.

First Multivariate independent component analysis is measured mutual dependence between lines of codes and

rules of code smells. The requirement measure is used for finding the association or correlation between

multiple code lines and rules. Based on dependence measure, developer identifies which types of code smell are

presented in that code lines. This helps to improve software code smell identification accuracy with a reduced

amount of false positive rate. Second generalized random decisionforest classifier is proposed for code smell

rectification in source code lines. GRDFC constructs number of decision tree with randomly selected training

samples (i.e. refactoring technique). All the decision trees are combined and applied majority ballotingsystem.

Themajority votes are selected for rectifying the code smells in source code lines. This in prospectdevelops

the code smell renovation in terms of true positive rate with less computation cost. The statistical analysis of the

obtained results provides evidence to support the MICA-GRDFC technique is more efficient and effective than

state of the art refactoring techniques. A Multivariate independent component analysis based generalized

random decision forest classifier (MICA-GRDFC) technique is introduced for performing both code smell types

identification and smell renovation with less computation cost. The processing flow diagram of MICA-GRDFC

techniques is shown in figure 1.

Figure 1 Flow processing diagram of Multivariate independent component analysis

Multivariate Independent component analysis (MICA) is a machine learning method for identifying a code

smell types in source code. The normal independent component analysis acts as a linear transformation

considering the mutual statistical independence of the non-Gaussian source signals. But it does not considered a

multiple variables to forecast possible outcomes. In addition, MICA method often directs to local minimum

solution which difficult to detect exact code smells in source code. Therefore, (i.e. sum of code smells in source

code) and provides global optimum solutions in the code smell identification. The MICA-GRDFC technique

used for transforming observed multivariate data (i.e. source code) into statistically autonomous components

which are suggested as linear combinations of observed variables.In general, code smells in computer programs

refers to any indication in the source code of a program that possibly creates a deeper problem. There are

Certain Exploration of Code Smell Empathy and Refinement Employing Random Decision Forest

Classifier

705

different types of codes smells are presented namely application level, class level and method level in source

code. Multivariate Independent component analysis correctly identifies which types of code smell are presented

in source code based on the certain code rules. The certain rules of code smells are similar code exists, many

instance variables, class having little functions, redundant code and so on. Based on above said rules, the code

smell types are classified using Multivariate Independent component analysis. If source code line has the rule of

code smell, then the developer identified which types of code smell is presented. Flow processing diagram of

multivariate independent component analysis based software code smell type’s identification is shown in figure

2.

Figure 2 flow process of multivariate independent component analysis

Figure 2 shows the flow processing diagram of multivariate independent component analysis to identify the

different type’s code smell in source code lines. The input of source codes containsa number of source code

lines. The certain predefined rules are used to identify the code smellscategories in source code lines. The

relationship between source code and the rules of code smell are denoted as follows,

𝑆𝑖 = 𝐵𝑅𝑖------------- (1) i ∈ 0,1,2 … 𝑛

From (1)‘𝑆𝑖’ indicates a number of ‘m’ dimensional source codes and it contains a number of lines 𝑆 ∈
𝑙1, 𝑙2 … 𝑙𝑛 and ‘𝑅𝑖’ represents a ‘n’ dimensional independent components (i.e. certain rule) r1, r2, … . rn .

𝐵denotes a constant mxn mixing matrix. The aim of multivariate independent component analysis is to identify

the smell from the measured data matrix (i.e. source code). By improving the multivariate independent

component analysis, mutual information between ‘n’ variables (i.e. multivariate) is minimized. The mutual

information is a measure of mutual dependence between the source code lines and certain rules. The input of

source code contains a number of lines. MICA verifies each lines of source code to provide the best possible

solutions of code smell out of all possible solutions (i.e. global optimum solutions). If the source code line has

the rules of code smell, then the types of code smells are identified. Therefore, mutual dependence is described

as,

𝑀𝐷 = ∑ ∑ 𝑝(𝑙, 𝑟) log10 (
𝑝(𝑙,𝑟)

𝑝(𝑙),𝑝(𝑟)
)𝑟∈𝑅𝑙∈𝑆 ----- (2)

From (2), where 𝑝(𝑙, 𝑟) denotes a joint probability distribution of source code lines and rules that gives the

classification probability that falls in any source code. 𝑝(𝑙)and𝑝(𝑟) represents a marginal probability of source

code lines and rules of code smell. Mutual dependence is a measure of the intrinsic dependence expressed in

joint distribution of ‘l’ and r under the assumption of independence. If ’𝑙’ and ‘r’ are independent then the joint

probability is described as,

𝑝(𝑙, 𝑟) = 𝑝(𝑙) ∗ 𝑝(𝑟)--------(3)

By substituting equation (3) in (2), mutual dependency is derived as follows,

𝑀𝐷 = ∑ ∑ 𝑝(𝑙) ∗ 𝑝(𝑟) log10 (
𝑝(𝑙)∗𝑝(𝑟)

𝑝(𝑙)∗𝑝(𝑟)
)𝑟∈𝑅𝑙∈𝑆 ---- (4)

M.Sangeetha , Dr.C.Chandrasekar

706

From the above equations are solved by,

𝑀𝐷(𝑙, 𝑟) = ∑ ∑ 𝑝(𝑙) ∗ 𝑝(𝑟) log10(1)𝑟∈𝑅𝑙∈𝑆 ------- (5)

𝑀𝐷(𝑙, 𝑟) = 0----- (6)

From (5), the value of log 1 is zero and it is shown in equation (6). Therefore, it shows independence

between code lines and rules of code smells. Mutual independence is measured and it expressed in joint

distribution of ‘l’ and r under the assumption of dependence. If ’𝑙’ and ‘r’ are dependent then the joint

probability is described as,

𝑝(𝑙, 𝑟) ≠ 𝑝(𝑙) ∗ 𝑝(𝑟)----- (7)

Therefore, the mutual dependence is obtained by,

𝑀𝐷(𝑙, 𝑟) = ∑ ∑ 𝑝(𝑙, 𝑟) log10 (
𝑝(𝑙,𝑟)

𝑝(𝑙),𝑝(𝑟)
)𝑟∈𝑅𝑙∈𝑆 , 𝑀𝐷(𝑙, 𝑟) ≥ 0----------(8)

Therefore,

𝑀𝐷(𝑙, 𝑟) = {
0 𝑙, 𝑟 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

≥ 0 , 𝑙, 𝑟 𝑎𝑟𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
-------------- (9)

Therefore, if 𝑀𝐷(𝑙, 𝑟) ≥ 0 , provides the correlation between the source code lines and rules. it is identified

as a certain type of code smells presented in a source code lines. Mutual dependence measured association or

correlation between the multiple variables (i.e. multiple code lines and rules) by evaluating both dependence and

independence of source code lines and rules. This provides the global optimum solution by verifying each lines

of source code to detect code smells.Algorithmic description of Multivariate independent component analysis is

shown inbelow

Input: Source code’, source code lines 𝑙1, 𝑙2 … 𝑙𝑛 , certain rules r1, r2, … . rn

Output: improve software code smells type identification accuracy

Step 1: Create

Step 2: For every source code lines

Step 3: Measure relationship between source code and the rules using (1)

Step 4: Measure mutual dependence between ‘l’ and ‘r’ using (4)

Step 5: Measure mutual independence between source code lines and rule of code smell using (8)

Step 6: if (MD==0) then

Step 7: Software code smells type is not identified

Step 8:endif

Step 9: if (MD≥0) then

Step 10: Software code smells type is identified in source code lines

Step 11::endif

Step 12: endfor

Step 13: End

Initially, the mutual relationship between the source codes lines and the rules are measured. Then the

dependence between the source codes lines and the rules provides the correlation and it effectively used for

identifying the software code smells types in source code. This supports to improve the smell identification

accuracy with least false positive rate.

Certain Exploration of Code Smell Empathy and Refinement Employing Random Decision Forest

Classifier

707

2. Generalized random decision forest classifier for code smells type rectification

When the code smells types are recognized, the MICA-GRDFC technique performs code smells type

rectification using generalized random decision forest classifier. When reporting code smell identification

results, software developer refactors the code smell types in source code lines with minimum cost utilization.

The code smells in source code lines are particularly large and complex, and generates larger issues to the

maintainability of software system. Therefore, a machine learning classifier namely generalized random

decision forest classifier technique is applied for efficient rectification. The limitation of general Random forests

classifier takes more inputs samples and its slow to evaluate and provides misclassifications. But our

generalized random decision forest classifier calculates error model during the classification to avoid the slow

process and improves the classification performance. GRDFC rectify the code smell types without altering the

internal behavior of the source codes. This in turn improves the code quality and maintainability of software

system. Source code design and its quality are boosted by applying refactoring thus increases the code

reusability. Generalized random decision forest classifier has ‘n’ number of binary decision trees. From the

below figure, each decision trees are qualified by a random approach. GRDFC selects random samples

correlated to the identified code smells from collections of training samples (i.e. refactoring techniques). The

final decision combines all the outputs from the individual decision tree.

Figure 4 process of generalized random decision forest classifier

Let us consider, GRDFC takes the refactoring techniques as training samples (s1, y1), (s2, y2) … (sn, yn) to

perform efficient code smell rectification. From the number of training samples, (s1,s2 … , sn) a random sample

with replacement of the training set and fits trees to these sets, and y1, y2, . . yn represents output of class labels.

GRDFC rectifies the code smells in source code by exchanging the suitable refactoring technique (i.e. samples).

GRDFC randomly constructs a decision tree with the training samples and classifies which refactoring

technique is more suitable for rectifying the particular type of code smells through majority vote. The majority

vote of samples is predicted from the trees for rectification.

The decision tree is mostly employed in classification as it is fast and provides more efficient results. Based

on given input training samples, a decision tree creates a model that predicts the value of a target variable (i.e.

refactoring technique). Each internal node in tree denotes a test on training samples. A leaf node holds the

different classes and delivers an effective prediction of refactoring technique to interchange the code smell in

source code. The output of the decision tree is combined as follows,

�̂� = 𝑓(𝑥1) + 𝑓(𝑥2) + ⋯ + 𝑓(𝑥𝑛) − − − (10)

From (10),𝑓(𝑥) denotes an output of individual tree classifier. After training, predictions of training samples

are obtained by averaging the predictions from all the individual decision trees. Therefore, the output of

generalized random decision forest classifier is expressed by applying the majority vote,

�̂� = 𝑉{𝑓(𝑥1) + 𝑓(𝑥2) + ⋯ + 𝑓(𝑥𝑛)} − − − (11)

From (11), 𝑉 represents a vote applied for number of samples in individual tree classifier𝑓(𝑥). Therefore

output of classifier is formulated as,

M.Sangeetha , Dr.C.Chandrasekar

708

�̂� = 𝑎𝑟𝑔 max
𝑛

{𝑠|𝑠 ∈ sn}----- (12)

From (11),�̂� denotes a final predicted classifier output with majority votes and 𝑠 denotes a suitable

refactoring technique whose decisions are known to the 𝑛𝑡ℎ classifier. The arguments of the maxima (arg max)

are the maximum value of some function. Therefore, a suitable refactoring technique is predicted from number

of samples(sn). During the classification, the generalized random decision forest classifier minimizes the

generalization error to improve the classification. In MICA-GRDFC technique, generalization error is a measure

of how accurately an algorithm is effectively predicts the outcomes. Therefore, the generalization error is

defined as the difference between the predictable and observed error. This is the difference between error on the

training set and error on the fundamental joint probability distribution. It is measured as follows,

𝐸𝑔 = 𝐸𝑝 − 𝐸𝑜------- (13)

From (13),𝐸𝑔 denotes a generalization error, 𝐸𝑝 and 𝐸𝑜 denotes an error of predicted and observed error

respectively.

𝐸𝑝 = ∑ 𝐿(𝑓(𝑥𝑖),𝑛
𝑖=1 �̂�) 𝑝(𝑠𝑖 , �̂�) − − − (14)

From (14), where 𝐿 𝑓(𝑥𝑖) denotes a loss function of individual classifier and 𝑝(𝑠𝑖 , �̂�) represents an unknown

joint probability distribution for the input of training samples and 𝑦 represents a predicted output values.

Observed error is measured as follows,

𝐸𝑜 =
1

𝑁
∑ 𝐿(𝑓(𝑥𝑖),𝑛

𝑖=1 �̂�)--- (15)

From (15),𝑁 denotes a number of input training samples. MICA-GRDFC technique measures the

generalization error and it reduced for improving the accuracy of rectification with minimum computation cost.

Initially, training samples are considered for perform code smell type rectification. From the training samples,

the random samples are selected which are relevant to the detected code smells types in source code lines. Then

these samples are trained with decision tree classifier. These classifiers are combined into one classifier and

applied voting for achieving the prediction of decision. Therefore the majority vote of the random set (i.e.

refactoring technique) is predicted in the decision of 𝑛𝑡ℎ class. During the taxonomy, the generalization error is

measured for avoiding the misclassification. Therefore, it helps to select the appropriate refactoring technique

and correct the code smells in source code lines.

Figure 4. Measured Mutual Dependence

Certain Exploration of Code Smell Empathy and Refinement Employing Random Decision Forest

Classifier

709

Figure 5. Rectification code smell using GRDFC

3. Research Questions

This proposed technique aims to drive inexperience software engineers to apply more refactoring promptly.

The goals include two aspects.

(1) Identify more code smell

(2) Improve true positive rate

As a decision, the initial estimation should examine the following research questions

RQ1: Which kinds of refactoring technique practical software system such as Android, Apache and Eclipse?

RQ2: How far of precision to recognize the code smells in source code?

4. Experimental Settings

Our training samples takes 500 open source projects and well recognized ecosystems Android, Apache and

Eclipse.Software developer monitors every lines in the source program to observe the codes smell and also

identify which types of code smells are existing in particular line. The MICA-GRDFC technique performs

efficient code smell types identification and rectification in source code lines.The experimentation is

accompanied with the parameters such as software code smell type’s identification accuracy, false positive rate,

true positive rate and computation cost with respect to input source code.

Table1: Sample open source projects

Ecosyste

m

#Pro

j

#Class

es

KLO

C

Apache 100 4-5052 1-

1031

Android 70 5-4960 3-

1140

Eclipse 30 142-

16,700

26-

2610

5. Results And Discussion

Result and discussion of MICA-GRDFC techniques are explained and compared with existing monitor-based

instant refactoring framework and P-EA approach. The presentation analysis is approved out with number of

factors such as software code smell type identification accuracy, false positive rate, true positive rate and

computation cost with respect to input source code. The results are discussed with the help of tables and graph

values

M.Sangeetha , Dr.C.Chandrasekar

710

5.1 Impression of software code smell types identification accuracy

Software code smell types Identification accuracy is measured constructed on the number of code smells

type are identified appropriately in source code. The source code has number of lines. The software code smell

type identification accuracy is measured as follows

𝑆𝐶𝑀𝑇𝐼𝐴 =
𝑁𝑠𝑙− 𝑐𝑜𝑑𝑒 𝑠𝑚𝑒𝑙𝑙 𝑡𝑦𝑝𝑒 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑁𝑠𝑙
∗ 100 (16)

From (16), Where 𝑆𝐶𝑀𝑇𝐼𝐴represents a software code smell type identification accuracy and ‘𝑁𝑠𝑙’ represents

a number of source code lines. It is measured in the unit of percentage (%).

Table 2: Software code smell type Identification accuracy

Source code

(KB)

Software code smells type Identification accuracy (%)

MICA-

GRDFC

Monitor-based instant refactoring

framework

P-EA

approach

2 86 62 73

4 87 65 75

6 88 69 78

8 90 70 82

10 91 72 83

12 93 75 84

14 94 78 85

16 95 80 86

18 96 82 88

20 97 84 89

As shown in figure 6, performance results of software code smell type identification accuracy is illustrated.

The below figure clearly illustrations that the accuracy is significantly improved than the existing methods. The

existing monitor-based instant refactoring framework performs code smells detection. But the rule based code

smell detection was not performed. On the contrary, the proposed MICA-GRDFC technique uses multivariate

independent component exploration identifies the code smell type in source code lines by applying certain rules

of code smell.

Figure 6 performance results of software code smell type identification accuracy

Certain Exploration of Code Smell Empathy and Refinement Employing Random Decision Forest

Classifier

711

5.2 Impact of false positive rates

False positive ratesare measured based on proportion of number of code smell types are inaccurately

identified to the number of lines in source code. The false positive rate is measured as follows,

𝐹𝑃𝑅 =
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑑𝑒 𝑠𝑚𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑁𝑠𝑙
∗ 100 (17)

From (17), where 𝐹𝑃𝑅 represents false positive rate and ‘𝑁𝑠𝑙’ denotes a number of source code lines in

software code. It is measured in terms of percentage (%).

Table 3 Tabulation for false positive rate

Source

code

(KB)

False positive rate (%)

MIC

A-

GRDFC

Monitor-

based instant

refactoring

framework

P-EA

approach

2 20 42 30

4 23 44 32

6 25 45 33

8 26 47 34

10 29 50 37

12 30 52 39

14 32 53 40

16 34 55 41

18 36 57 43

20 38 58 45

Performance evaluation of false positive rate with respect to source code is described. For the experimental

evaluation, the input of source code is taken from 2KB to 20KB. Each source code has number of lines. From

the table value, MICA-GRDFC technique reduces the incorrect detection of code smell types in source code

lines when compared to existing monitor-based instant refactoring outline and P-EA method respectively.

M.Sangeetha , Dr.C.Chandrasekar

712

Figure 7: Performance results of false positive rate

5.3 Impact of computation cost

Computation cost is measured based on amount of time required for rectifying the code smell types in source

code program. The formula for computation cost is measured as follows.

𝐶𝐶 = 𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑑𝑒 𝑠𝑚𝑒𝑙𝑙𝑠 ∗ 𝑇(𝑟𝑒𝑐𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝑐𝑜𝑑𝑒 𝑠𝑚𝑒𝑙𝑙 𝑡𝑦𝑝𝑒) (19)

From (19), where 𝐶𝐶 denotes computation cost, ′𝑇′ represents time for the code smell types rectification in a

source code lines. It is measured in terms of millisecond (ms).

Table4. Tabulation for computation cost

Source code

(KB)

Computation cost (ms)

MICA-

GRDFC

Monitor-based instant refactoring

framework

P-EA

approach

2 8 20 13

4 10 30 16

6 16 42 28

8 23 54 36

10 30 63 48

12 38 79 56

14 43 87 63

16 57 107 78

18 66 117 93

20 78 128 97

Experimental results of computation cost with respect to source code are described in table 4. The table

values shows that the calculation cost is reduced using MICA-GRDFC technique when compared to existing

using monitor-based instant refactoring framework [1] and P-EA approach [2]. This is due to the

projectedMICA-GRDFC technique uses generalized random forest decision classifier. The comparison results

of computation cost are shown in figure 9.

Certain Exploration of Code Smell Empathy and Refinement Employing Random Decision Forest

Classifier

713

Figure 9 performance results of computation cost

From the observations, the computation cost is suggestively reduced by 53% and 33% when related to

monitor-based instant refactoring framework [1] and P-EA approach [2] respectively. From the above said

discussions, MICA-GRDFC technique identified and rectified the code smells and its types by using suitable

refactoring technique with less computation cost.

6 Conclusion

An well-organized Multivariate independent component investigation based generalized random decision

forest classifier (MICA-GRDFC) machine learning technique is obtainable for achieving value assured software

refactoring. At first, the software developer recognizes number of code smells and its types in a source code.

The code smell identification is proficient using multivariate independent component analysis. The MICA

performs mutual dependence and independence between source code lines and certain rules of code smells. The

dependence between source code lines and rules of code smells are used to recognize which types of code

smellsare presented in source code. This in turn develops code smell type identification accuracy with less false

positive rate. Furthermore, the developer performs code smells rectification by applying generalized random

decision forest classifier. The GRDFC execute efficient classification by constructing the binary decision tree

with the number of random samples related with code smells. The maximum polling is applied for aggregating

all the decision tree classifier. Then the best refactoring technique is forecast and it is used for code smell

rectification with less computation cost and high true positive rate. Experimental evaluation is achieved using

schoolmate dataset with the parameters are software code smell type identification accuracy, false positive rate,

true positive rate and computation cost. The results analysis of MICA-GRDFC technique progressessoftware

code smells type identification accuracy and true positive rate with less computation time as well as false

positive rate than the state-of-art methods.

