M. Melna Frincya, J.R.V. Edward

Turkish Online Journal of Qualitative Inquiry (TOJQI) Volume 12, Issue 6, June 2021: 714 - 718

Extension of the δ - Function of \mathbb{R}^n

M. Melna Frincy^a, d J.R.V. Edward^b

^a Dept. of Mathematics, Ponjesly College of Engineering, Nagercoil – 629 003, Tamil Nadu, India ^b Dept. of Mathematics, Scott Christian College, Nagercoil – 629 003, Tamil Nadu, India

Corresponding author: melnabensigar84@gmail.com,jrvedward@gmail.com

Abstract

The delta function plays a vital role in many areas of mathematics. Our objective in this paper is to extend it to higher dimensional spaces and to study some of its fundamental properties.

1. The δ - function

1.1 Definition:

Let \mathbb{R} be the set of real numbers and \mathbb{C} be the set of complex numbers.

The $\boldsymbol{\delta}$ - function on a subset E of $\mathbb R$ or $\mathbb C$ is the function

 $\delta : E \rightarrow \{0, 1\}$ defined by

$$\delta(x) = \begin{cases} 0 \ if \ x = 0\\ 1 \ if \ x \neq 0 \end{cases}$$
(1)

The first thing we observe is that δ is a mininorm on $X = \mathbb{R}$ or \mathbb{C} . Before writing a proof for this simple observation, let us define a mininorm.

1.2 Definition

Let X be a vector space over $K = \mathbb{R}$ or \mathbb{C} . A mininorm on X is a function $w = X \to \mathbb{R}$ which satisfy the following conditions:

(a) $w(x) \ge 0$ for all $x \in X$	(2)
------------------------------------	-----

(b) $w(\alpha x) = w(x)$ for all $x \in X$ and $\alpha \in K$, $0 \neq \alpha \in K$	(4)
(c) $w(x + y) \le w(x) + w(y)$ for all $x, y \in X$	(5)

A vector space X with a mininorm w defined on it is called a mininormed space and is, in general, denoted by (X, w).

Note: Every mininorm w induces a metric d_w defined by

(6)

 $d_w(x, y) = w(x - y)$ for all $x, y \in X$

1.3 Proposition

Let $X = \mathbb{R}$ or \mathbb{C} . Then $\boldsymbol{\delta}$ is a mininorm on X.

Proof :

Condition (a) for a mininorm is obvious from the definition of δ .

To verify (b) take $x \in X$ and $\alpha \in K$ with $\alpha \neq 0$.

If x = 0, then $\alpha x = 0$ so that $\delta(x) = \delta(\alpha x) = 0$.

If $x \neq 0$, then $\alpha x \neq 0$ so that $\delta(x) = \delta(\alpha x) = 1$.

Now, we prove (c).

Suppose x + y = 0. Then (c) is obvious.

Now suppose $x + y \neq 0$. Then, at least one of x and y is non zero. Without loss of generality, we may assume that $x \neq 0$. Then, $\delta(x) = 1$

So, $\delta(x) + \delta(y) \ge 1$. But $\delta(x + y) = 1$.

Hence $\delta(x + y) \leq \delta(x) + \delta(y)$.

1.4 Remark:

It can be easily checked that whenever w is a mininorm on \mathbb{R} or \mathbb{C} , rw is also a mininorm on \mathbb{R} or \mathbb{C} where r is any real number $r \neq 0$. Hence, for any real number $r \neq 0$, $r\delta$ is also a mininorm on $X \in \mathbb{R}$ or $\mathbb{C} \cdot r\delta$ is the function given by

$$r\delta(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x \neq 0 \end{cases}$$

$$\tag{7}$$

we may denote $r\delta$ by δ_r .

2. Extension of the δ - Function of \mathbb{R}^n

2.1 Definition:

Let $X = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$

Define $\delta(x)$ by

$$\delta(x) = (\delta(x_1), \delta(x_2), \dots, \delta(x_n)) \qquad (8)$$

Let us now define an order relation on \mathbb{R}^n .

2.2 Definition:

Let $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$ We say that $x \le y$ if and only if $x_i \le y_i$ for all i = 1, 2, 3, ..., n. It is clear that \le is a partial order relation on \mathbb{R}^n .

As an illustration, $(2, 0, -3) \leq (5, 1, 0)$ in \mathbb{R}^3 .

But the vectors (2, 0, -3) and (5, 1, 0) are not comparable with respect to this order. Thus, the law of trichotomy does not hold in \mathbb{R}^n with respect to this order for n > 1.

It is now interesting to note that most of the properties of δ on \mathbb{R} hold for the extended δ on \mathbb{R}^n .

2.3 Proposition: δ in \mathbb{R}^n satisfies the following:

(a) $\delta(x) \ge 0$ for all $x \in \mathbb{R}^n$ and $\delta(x) = 0$ if and only if x = 0.

(b) $\delta(rx) = \delta(x)$ for all $x \in \mathbb{R}^n$ and for all $0 \neq r \in \mathbb{R}$.

(c) $\delta(x + y) \leq \delta(x) + \delta(y)$ for all $x, y \in \mathbb{R}^n$.

Proof:

Let $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$

Then, clearly $\delta(x) = (\delta(x_1), \delta(x_2), \dots, \delta(x_n)) \ge 0$.

since $\delta(x_i) \ge 0$ for all *i*.

And $\delta(x) = 0$ if and only if $\delta(x_i) = 0$ for all *i*.

if and only if $x_i = 0$ for all *i* if and only if x = 0.

For $r \neq 0$, consider

$$\delta (rx) = (\delta rx_1, rx_2, \dots, rx_n)$$

$$\delta (x) = (\delta (rx_1), \delta (rx_2), \dots, \delta (rx_n))$$

$$\delta (x) = (\delta (x_1), \delta (x_2), \dots, \delta (x_n)) = \delta (x)$$

Further,

$$\delta (x + y) = \delta (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

= $(\delta (x_1 + y_1), \delta (x_2 + y_2), ..., \delta (x_n + y_n))$ (9)

Now, $\delta(x_i + y_i) \leq \delta(x_i) + \delta(y_i)$ for all *i*.

So, (9) gives

$$\delta(x + y) = (\delta(x_1) + \delta(y_1)), (\delta(x_2) + \delta(y_2), ..., (\delta(x_n) + \delta(n))),$$

= $(\delta(x_1), \delta(x_2), ..., \delta(x_n)) + (\delta(y), \delta(y_2), ..., \delta(y_n))$

For an $X = (x_1, x_2, ..., x_n)$ in \mathbb{R}^n , its norm ||x|| is defined by

$$\|x\| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}.$$
 (10) For

$$x = (x_1, x_2, \dots, x_n), \text{ put } |x| = (|x_1|, |x_2|, \dots, |x_n|).$$
(11)

Also, for $r \in \mathbb{R}^n$, put $\bar{r} = (r, r, ..., r) \in \mathbb{R}^n$. (12)

For example, $\overline{1} = (1, 1, \dots, 1)$.

Now we have the result:

2.4 Proposition

Let $x \in \mathbb{R}^n$.

(a) If $x \ge 1$, then $||x|| \ge ||\delta(x)||$

(b) If $|x| \le 1$, then $||x|| \le ||\delta(x)||$.

Proof:

Suppose $x \ge 1$. That is, $x_i \ge 1$ for all *i*.

So, $x_i^2 \ge 1^2 = \delta (x_i)^2$ for all *i*.

Hence,
$$x_1^2 + x_2^2 + \dots + x_n^2 \ge \delta(x_1)^2 + \delta(x_2)^2 + \dots + \delta(x_n)^2$$

which implies

 $\|x\| \ge \|\delta(x)\|$

```
Now, if |x| \le 1, then |x_i| \le 1, for all i.
```

so that $x_i^2 \le 1^2 = \delta (x_i)^2$

Hence we get, $||x|| \le ||\delta(x)||$

Note:

It is not true that $x \le 1$ implies $||x|| \le ||\delta(x)||$

For example, let X = (-2, 0, 0) in \mathbb{R}^3

Then $x \leq 1$.

 $\delta(x) = (1, 0, 0) \text{ and } \|\delta(x)\| = 1.$

But $||x|| = 2 \ge ||\delta(x)||$.

2.5 Definition:

For i = 1, 2, ..., n, e_i is the vector defined by

 $e_i = (0,0, ..., 1, 0, ..., 0)$, with 1 occurs in the i^{th} place and all other co ordinators are 0.

Remark:

 $\delta(e_i) = e_i$

More generally, for $r \neq 0$,

$$\begin{split} \delta(re_i) &= \ \delta \ (0,0,\ldots,r,0,0,\ldots,0) \\ &= \ (0,0,\ldots,\delta(r),0,0,\ldots,0) \\ &= \ (0,0,\ldots,1,0,0,\ldots,0) = e_i \end{split}$$

References

- [1] Justesan and Hoholdt A course in Error Correcting codes. Hindustan Book Agency, New Delhi, 2004.
- [2] E. Kreyszig Introductory Functional Analysis with Applications. John Wiley & Sons, New York, 1978.
- [3] B.V. Limaye Functional Analysis. New Age International Publishers, New Delhi. 1996.
- [4] G.F. Simmons Introduction to Topology and Modern Analysis. Mc Graw Hill, Tokyo, 1963.