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Abstract: 

Cloud computing is a collection of distributed computers that allow users to access resources and services over the 

Internet. The optimal use of resources for various applications depends on how tasks are scheduled in the cloud 

environment, which has a significant impact on the efficiency of cloud service providers. Task scheduling is a key 

process in the cloud computing environment, which aims to execute user requests on resources in an efficient 

manner, taking into account other features of the cloud environment. The main goal of task scheduling is minimizing 

the makespan time and maximizing throughput as well as minimizing the cost. Since task scheduling is considered 

as an NP-complete problem, the necessity of using nondeterministic and meta-heuristic algorithms to optimize task 

scheduling is evident at a logical time. The major part of this problem is to design an efficient intelligent searching 

pattern to schedule the tasks in available virtual machines. In this paper, we propose a meta-heuristic algorithm 

called hybrid chaotic grey wolf optimizer (HCGWO) to tackle the problem of task scheduling in various 

heterogeneous virtual machines. This paper focuses on minimizing overall makespan and cost by modeling the 

swarm intelligence. The proposed algorithm prevents the local convergence and explores the global intelligent 

searching in finding the best optimized virtual machine for the user task among the set of virtual machines. We have 

made the simulation and performance evaluation using Cloudsim toolkit and compared the results with other swarm 

intelligent based algorithms such as Genetic Algorithm, Particle Swarm Optimization, and Cuckoo Search. The 

evaluation results show that there is a major improvement in minimizing the makespan and cost. 

Keywords Cloud computing, Task scheduling, Virtual machine, Multi-objective Optimization, Grey wolf optimizer 

 

1. Introduction 

Cloud computing is a reliable computing model that offers highly efficient and highly scalable web-based 

applications, computing resources and services. These services can be accessed over the Internet which has attracted 

many users due to the reduction of operating cost [1]. Through strong virtualization capabilities, users can submit 

their requests to the cloud without any knowledge of the underlying structure of the platform [2].  

In cloud systems, resources are distributed across multiple domains which increase the security of the system [3]. 

The main objective of cloud computing is to provide services in a fast and energy efficient manner using available 

resources. Therefore, tasks submitted by end-users are required to be scheduled by a scheduling mechanism that 

balances the load on available resources while minimizing their execution time and cost [4]. Three types of 

categories called infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS) are 

provided by the cloud service model. Infrastructure as a Service (IaaS) is a self-service model which offers clients to 

access, monitor, and manage remote datacenter infrastructures, such as virtualized components, external storages, 

high-end computing resources, and networking services (e.g. firewalls). Platform as a service (PaaS) is a third-party 

provider, which delivers hardware and software tools and provides a platform and environment to allow developers 

to build applications and services over the Internet. Software as a service (SaaS) is a model for the distribution and 

programming models to analyze and process the data in a cloud environment [5]. These three cloud service models 

are shown in Fig. 1. 
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Fig. 1 Cloud service models. 

 

Task scheduling problem is an NP-complete problem that takes into account different factors such as execution time, 

power consumption, and resource utilization [6]. The problem of obtaining a suitable balance between the duration 

and energy consumption is a multi-objective optimization problem. The process of task scheduling involves 

receiving the tasks from users and assigning them to available resources while considering the requirements and 

properties of each task [7]. Many studies solely try to minimize execution time as the single objective of the problem 

while ignoring the need for minimization of cost in cloud infrastructures. 

For a reliable scheduler, it is advantageous to use meta-heuristic algorithms that find near-optimal solutions. Grey 

wolf optimizer (GWO) [8] is a recently introduced population-based optimizing algorithm that has shown to be a 

better performing algorithm than many other algorithms. The previous optimization techniques such as GA and PSO 

not only suffer from local minima but also have time complexity problem [9]. In order to improve previous studies 

and overcome the limitations in the existing research works like high makespan problem with GA and PSO, a multi-

objective task scheduling approach  called HCGWO for clouds using grey wolf optimizer is proposed in this study.  

The performance of the proposed HCGWO is evaluated through experimental studies by three sets of 

configurations. Finally, the results are compared with those provided by some meta-heuristic approaches like 

Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Cuckoo Search (CS). 

The rest of the paper is organized as follows: a brief review of some of the literature works based on task scheduling 

in cloud computing is presented in Section 2. In Section 3 the background of the proposed method is explained in 

detail. Problem evaluation of our proposed method is given in Section 4. The experimental results and the 

performance evaluation discussion are provided in Section 5. Finally, the conclusions are summed up in Section 7. 
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2. Related Work 

In recent years, a lot of research has been conducted in the area of task scheduling problem. Here, we review some 

of the relevant studies. Ramezani et al. [10] enhanced the quality of service in a cloud environment by decreasing 

the length of tasks queue in addition to reduction in task execution cost and power consumption. Traditionally, in 

many task scheduling algorithms using evolutionary algorithms, tasks get assigned to higher performance virtual 

machines while lower performance virtual machines get neglected which leads to unnecessary longer queues. Their 

proposed solution to this problem was developed based on multi-objective particle swarm optimization and multi-

objective genetic algorithm. 

To tackle energy consumption challenges in cloud, Zhao, et al. [11] introduced the Task Requirement Degree (TRD) 

to enhance resource utilization while reducing power consumption. Two main strategies to achieve this goal include 

avoiding frequent transmission of data which is fairly energy consuming and load balancing between machines to 

decrease inefficiency. Slave ant colony optimization (SACO) is a novel ant colony based algorithm proposed by 

Moon, et al. [12] that is tested on the task scheduling problem. The improvement made to the original optimizing 

algorithm is by avoiding long paths created by leading ants and reported results to show improvement in terms of 

preprocessing time and makespan over other ant colony based algorithms. Alla, et al. [13] proposed a novel 

technique by using both fuzzy logic and particle swarm optimization coupled with dynamic queues.  

Keshanchi et al. [14] introduced a priority-based task scheduling approach in cloud environment which uses an 

improved variant of genetic algorithm called N-GA. An elitism schema is adopted to avoid premature convergence 

of solutions. In addition to that, the proposed model is verified using model checkers which showed model support 

for reliable and deadlock-free problems. 

With emphasis on power efficiency and environmental concerns, Lin et al. [15] proposed a task scheduling 

algorithm that uses server power efficiency of tasks to guide the algorithm which can be described as the ratio of 

tasks executed to the amount of energy consumed in a specific amount of time. The main idea is to predict power 

efficiency of every task on every machine and using this parameter to guide task scheduling and mapping tasks to 

the machine with highest energy.  

Since reliability is an important factor in quality of service in cloud computing, Yang, et al. [16] have selected 

reliability of nodes as the objective to be optimized. With the means of game theory, the problem of task scheduling 

is modeled as a sequential multi-stage game. The task scheduling algorithm based on sequential game mainly 

attempts to minimize the execution time of the task. Findings are promising for big data in cloud environments. An 

artificial bee colony algorithm that approaches the problem with multiple objectives of makespan, cost, energy, and 

load is proposed in [17].  

A different set of objectives including energy, time, migration cost, and load utilization was the subject of the hybrid 

algorithm introduced by Gobalakrishan and Arun [18]. They proposed a hybrid algorithm by combining genetic 

algorithm and grey wolf optimizer. The genetic algorithm improves the efficiency of grey wolf optimizer while 

optimizing the execution of tasks in virtual machines which results in better performance than each algorithm 

individually. 

Similarly, a genetic and bacteria foraging hybrid algorithm to tackle the balance between makespan and power 

consumption is modeled as a multi-objective optimization problem in [19]. Simulation results show that the 

scalability of the hybrid algorithm is promising to make it suitable for large-scale clouds.  

Nasr et al. [9] have presented a new meta-heuristic method called water pressure change optimization (WPCO) to 

solve task scheduling problem. WPCO is inspired by the phenomenon of water density changing. WPCO can 

allocate tasks on available resources in low time complexity as well as improving memory usages and resource 

utilization. 

A hybrid meta-heuristic algorithm based on fuzzy logic and particle swarm optimization along with dynamic 

dispatch queue is proposed in [20] to optimize cloud utilization and quality of service. The experimental results 

show an improvement in makespan, resource utilization, and load balancing.  

3. Background 

3.1. Grey Wolf Optimizer (GWO) 

Grey Wolf Optimizer, proposed by Mirjalili et al. in 2014 [8], is a newly introduced swarm intelligence (SI) 

algorithm, inspired by the collective behavior of grey wolves (GWs) and based on social hierarchy and hunting 

procedure of GWs for prey in nature, like any other swarm intelligence algorithm. Grey wolves usually prefer to live 

in a pack with the size of 5 to 12 members on average. According to [8], all 

grey wolves in a pack have to follow very strict rules in a social dominant hierarchy. The hierarchy of grey wolves 

consists of four levels, gradually decreasing from   to   according to fitness value [21]: 



Hybrid Chaotic Grey Wolf Optimizer for Task Scheduling in Cloud Computing 
 

 

 

1. The alphas ( ) , a male and a female, are the most dominant wolves and in the highest level in 

the hierarchy. This means that they are leaders and responsible for making all decisions such as hunting. 

These decisions should be followed by the group. The alphas represent the best solution in GWO . 

2. The betasin making   of dominance in the group and help  e second highest levelare th ( )   

decisions or other activities. They are also advisors of  wolves and the best candidates to be the alpha. 

3. The deltas ( ) are the third level in wolves group and submit information to alphas and betas, 

however, they dominate the omega. They usually responsible for watching the boundaries of territory, 

protecting and caring of the pack as well as hunting. 

4. The omegas ( )  are the lowest level of dominance in the pack and the last wolves allowed to 

eat. They are considered as followers. 

 

The principal steps executed in GWO are searching, encircling, hunting, and attacking the prey. These major steps in 

a mathematical formulation of GWO, presented in [8], are described as follows: 

1. Social hierarchy of GWO: 

According to the level of dominance in the pack, there are four kinds of solutions in the mathematical 

model for the GWO. The best and fittest solution is called the alpha ( ) . Beta ( )  and delta ( )  

represent the second and third best solutions respectively, and remaining solutions are known as ω.  

2. Encircling behavior of grey wolves: 

Initially, the GWs encircle the prey before hunting. The following equations represent the encircling 

behavior: 

 

( ). ,pD C X X t= −  
(1) 

  

( ) ( )1 . ,pX t X t A D+ = −  
(2) 

 

where D  represents the distance between grey wolf and prey, t  indicates the current iteration number, 

A and C are coefficient vectors, pX  represents the position vector of the prey, X denotes the position 

vector of a grey wolf.  

 

The vectors A and C are calculated as follows:  

 

12 .A a r a= −  (3) 

  

22.C r=  (4) 

 

where the value of a  is linearly reduced from 2 to 0 during the iterations, and 
1 2,r r  are arbitrary vectors 

between  0,1 . 

 

3. Hunting prey: 

Usually, the alpha guides the hunt and the beta and delta occasionally join in hunting. To mathematically 

simulate the hunting behavior of grey 

wolves, the alpha (best solution) beta (the second best solution), and delta  

(the third best solution) are supposed to have better information regarding the potential position of the prey 

(optimum). Therefore, the first three best solutions determined so far are saved and oblige the other search 
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agents (including the omegas) to update their positions according to the position of the best search agents, 

 . The hunting behavior is mathematically formulated as follows [8]: 

 

The updated position of  ,  , and   is as in Eq. (5): 

 

( )
( ) ( ) ( )1 2 3

1
3

X t X t X t
X t

+ +
+ =  

(5) 

 

where 
1 2 3, ,X X X  are defined as in Eqs. (6), (7), and (8) respectively.  

 

 

( )1 1. ,X X A D = −  

 

(6) 

( )2 2. ,X X A D = −  

 

(7) 

( )3 3. ,X X A D = −  
(8) 

 

where , ,X X X    are the first three best solutions in the population at iteration t , 
1 2 3, ,A A A  are 

defined as in Eq. (3), and , ,D D D   are defined using Eqs. (9), (10), and (11) respectively. 

 

1. ,D C X X = −  

 

(9) 

2. ,D C X X = −  

 

(10) 

3. ,D C X X = −  
(11) 

 

Where 
1 2 3, ,C C C  are defined as in Eq. (4). 

It is clear from above discussion that the search process initializes with 

generating a random population of GWs in the GWO mechanism. During the 

iterations, α, β, and δ wolves evaluate the probable position of the prey. Each 

candidate solution updates its distance from the prey. 

4. Attacking the prey and search for prey (exploitation and Exploration): 

Grey wolves attack the prey when it stops moving, then the hunting process is over. This process can result 

in the global optima; that is the exploitation. It can be understood from Eqs. (6) to (8) that vector A  forces 

GWO to exploit. This process can be modeled mathematically by decreasing the value of a . Since the 

value of a  is diminished from 2 to 0, A  is also diminished. In other words, A  is a random value in the 

range of  2 ,2a a− . When 1A  , the grey wolves are compelled to attack the prey. On the other hand, 

the search for prey by the grey wolves is the ability of them in searching for various positions of the prey. 

That is, the search for prey is the exploration ability. The random values of A  are utilized to oblige the 
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search agent to diverge from the prey. For 1A  , the grey wolves are compelled to diverge from the prey 

[22]. 

3.2. Proposed Hybrid Chaotic Grey Wolf Optimizer (HCGWO) 

GWO algorithm is considered as the base algorithm in the proposed method due to its convergence power. There 

are two common aspects in most meta-heuristic algorithms: exploration and exploitation. The exploration is the 

ability of expanding search space, where the exploitation is the ability of finding the optimum around a good 

solution. In earlier iterations, a meta-heuristic algorithm explores the search space in order to find better 

solutions. To explore the search space thoroughly and to avoid getting trapped in a local optimum, the algorithm 

must use the exploration in the first few iterations. Hence, effective exploration is an important part in a meta-

heuristic algorithm. Over time exploration fades out and exploitation fades in, so the algorithm can find an 

optimum around a good 

solution. Finding a suitable tradeoff between exploration and exploitation is 

critical. Even though almost all meta-heuristic algorithms employ the exploration and exploitation aspects but 

their approaches might differ. Hence proposing a new approach is desirable. 

In GWO these two phases are controlled using the parameter a . As mentioned in the previous section this 

parameter is decreased linearly. In earlier iterations of the algorithm, exploration is performed and in the later 

iterations of the algorithm, exploitation is carried out. By changing the linear behavior of a , we can change the 

emphasis on exploration and exploitation and come up with a balanced approach between these two stages. Our 

new control parameter is as followed: 

 

( )
max

2 2

k

t
a t

t

 
= −  

 
 

(12) 

 

Where t  indicated the current iteration, maxt  is the total number of iterations and k  is a constant. Here the 

parameter a is still decreased from 2 to 0 but in a non-linear manner. For the values of k  between 0 and 1, the 

emphasis will be on exploitation, however adequate searching of the space might suffer. For values of more than 1, 

search space will be thoroughly explored and then the algorithm moves on to exploitation. A suitable value for k 

should be found by trial and error. 

We expect to improve GWO’s performance by the non-linear reduction of the control parameter, however, there is 

still room for further improvement. Another improvement that can be considered for GWO is hybridization. The 

main objective of the proposed method is to improve GWO by means of hybridization and adding more operators to 

enhance the exploratory capability [23]. For this reason, the proposed task scheduling method is composed of grey 

wolf optimizer and evolutionary algorithm (EA) [24]; as a result, crossover and mutation are added to GWO for 

better performance. For instance, the mutation and crossover operators from differential evolution (DE) are two 

effective operators to optimally explore and exploit a solution space. The DE-type mutation creates the self-adaptive 

characteristic of the solution population in DE known as contour matching [25] which refers to automatically 

explore the most promising area of the solution space [23].  

The mutation is one of the most important operators in evolutionary algorithms such as DE. In this paper, the 

Michalewicz's nonuniform mutation [26] is used for GWO. This is obtained by Eq. (13): 

 

( )

( )
1

, ,

, ,

t t t

gBest gBest i t rt

i t t t

gBest i worst

X t X X if rand M
X

X t X X otherwise

+
 + − 

= 
− −

 

(13) 

 (14) 

,
ˆ0.05r i bestM F=   

where t  is current iteration and trand  is a random number in  0,1  with uniform distribution. 
t

gBestX  and 

t

worstX
 

are the best and worst wolves 
( )i gBest worst 

, respectively. The mutation probability rM
 controls the 
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adaptive mutation process where 
,ˆ i best i bestF F F= − , 

iF  is the fitness value of the i th wolf and 
bestF is the best 

wolf in the current iteration. The function ( ),t X  takes a value in the interval (0, )w  and can be [27]calculated 

using Eq. 15. 

 

( )
1

, 1

t

Tt w w z

 
− 

 
 

 = − 
 
 

 

(15) 

 

where T  is the maximum number of iterations, z  is a random number in the  0,1 with uniform distribution. In the 

initial generations with emphasize to exploration nonuniform mutation tends to search the space uniformly and for 

tuning the solution in the later generations it tends to search the space locally, that is, closer to its descendants. 

The crossover mechanism is based on uniform or binomial crossover. A new crossover vector from the mutated 

vector ( )1 1 1 1

1 2, ,...,t t t t

i i i inX X X X+ + + +=  and the target vector ( )1 2, ,...,t t t t

i i i inX X X X= is produced by Uniform or 

binomial crossover using Eq. (16). 
1, ( )

, ( )

t

ij j rt

ij t

ij j r

X if R C or j random i
U

X if R C or j random i

+  =
= 

 

 

(16) 

 

where  0,1,...,j D ,  0,1,..., wi N , wN  is the number of wolves.  )0,1jR   is the j th realization of a 

uniform random generator number. Unlike classical evolutionary algorithm (EA) and differential evolution (DE), the 

crossover probability rC  is not a constant and is defined using Eq. (17) [27], 

,ˆ0.2 i best

rC F=   (17) 

  

,ˆ , 1,2,...,
i best

i best

wworst best

F F
F i N

F F

−
=  =

−
 (18) 

 

where wN  is the number of grey wolves. 
bestF and 

worstF are the best and the worst grey wolves in the current 

iteration, respectively, and 
iF  is the fitness or objective function value of the i th wolf. 

At the end, the greedy strategy from differential evolution (DE) [28] is used for selection mechanism and is done 

using Eq. (19), 

( ) ( )1
,t t t

ij ij ij it

i
t

ij

U if f U f X and rand
X

X otherwise


+

  
= 


 

(19) 

 

where 
irand  and   are random numbers in the interval ( )0,1 , ( )t

ijf X  represents the fitness of the last position, 

and ( )t

ijf U  is the new position obtained by Eq. (5). The value of   is randomly generated inside interval ( 0,1  

in each iteration. This greedy strategy ensures “survival of the fittest” which means the update is accepted only if a 

better objective is achieved. 

 

4. Problem Definition with Solution Framework 

This section provides the systems model of the proposed HCGWO algorithm for task scheduling in cloud 

computing. 

 

4.1. The system model 
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The cloud computing provides hardware infrastructure and software programs as on-demand high performance 

computing services as self-service access using virtualization techniques over the Internet or dedicated network, 

with delivery on demand, and payment based on usage. The low level cloud computing services range from full 

applications and development platforms to cloud servers, data storage, and virtual desktops [29]. The system model 

of task scheduling mechanism 

in the cloud computing is shown in Fig. 2. It includes cloud users who submit tasks, cloud interface called cloud 

broker, task scheduler and resource manager [30]. The resources contain one or more physical machines (PM) with 

one or more virtual machines (VMs), sharing memory, CPU, and storage. Each task is mapped to suitable VM 

according to the resource requirement such as CPU, memory, storage. The main steps of the working flow of this 

model are as follows: 

 

• After intracting with the cloud infrastructure, users can access the resources through cloud broker 

which is responsible for authentication and uthorization. The users submit the task requests to the task 

manager. The task manager manages the database to store every user request. 

• The Task Scheduler is major component, which act as a middleware between clients and resource 

manager to process the client request. It further takes all the information regarding the Task requirements 

posted by the clients and proceeds further for resource allocation using the inbuilt scheduling algorithm. 

• Finally, the resource manager plays an important role which acts as a resource information system 

and provides services to resource scheduler in order to allocate the user tasks in best possible VM. In order 

to balance the load 

of each host machines, resource manager has an in built resource monitor which keeps tracks of the entire 

loads and tackles the unbalanced condition. 

 

 
Fig. 2. System model of proposed task scheduling mechanism in the cloud computing. 
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4.2. The Task Scheduling Problem 

The main purpose of task scheduling is to determine the allocation of tasks of a given request to a given 

virtual machine (VM) of the cloud service provider in order to minimize fitness function. The cloud 

scheduler is responsible to find the optimal resource i.e. cloud virtual  machines (VMs) for the submitted 

tasks.  

In this regard, the task scheduling problem in cloud computing is one of important aspects of design since 

the overall performance of the cloud computing provider’s in terms of quality of service (QoS) depends on 

it. It is important to consider the part QoS plays in any task scheduler design. Most popular QoS factors of 

task scheduler design include execution time, transmission time, latency, resource utilization and 

makespan. Two QoS parameters including makespan and total cost are considered as two main objective of 

our task scheduling algorithm which have to optimized for better performance for the cloud providers and 

clients. 

To model our problem mathematically, it shoud be noted that each given task contains various autonomous 

subtasks. Each task should be assigned to one virtual machine. Let us consider the cloud, C , consiss of s  

physical machine, which can be represented using Eq. (20). 

 

 1

:

,..., s

Cloud C

PM PM PM=
  

(20) 

 

where C  represents the cloud and PM  represents a set of physical machines presented in the cloud. For 

each physical machine, a set of virtual machines are available which can be represented by Eq. (21), 

 

 

 

 

 1,..., ,...,j rVM VM VM VM=   (21) 

 

 where VM  represents a set of virtual machines presented in the physical machine iPM . Each 

virtual machine has the central processing unit (CPU) and the memory. The user tasks can be represented 

by Eq. (22), 

 
 

 1,..., nT T T=   
(22) 

 

 where T  is the set of tasks, and each task contains a task set  1,..., ,..., .i k mT t t t=  Each subtask 

kt  in iT  needs to be allocated to the corresponding virtual machine with minimum makespan and cost. The 

parameters used in the proposed method are given in Table 1. Each incoming task to the task scheduler 

contains different charactristics such as memory requirement, cost, and deadline.  

 
4.3. Proposed task scheduling method based on HCGWO 

The proposed task scheduling method for scheduling tasks to the virtual machines in the cloud computing 

is discussed in this section. The primary goal of the proposed method is to shcedule user tasks efficiently 

using an improved version of grey wolf optimizer. Our task scheduling method is based on the multi-

objective model [31] and grey wolf optimizer. The block diagram of the proposed task scheduling method 

is shown in Fig. 3. 
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Fig. 3. Block diagram of the proposed HCGWO for task scheduling. 

 

Step 1: Solution encoding 

The first important process for task scheduling is solution encoding. Solution encoding represents the allocation of 

all tasks on virtual machines in task scheduling process. Each solution in the proposed method consists of a set of 

tasks and virtual machines. Depending on virtual machine’s configuration such as capacity, tasks can be scheduled 

in order to minimize the cost and makespan. Assume that, there are four tasks ( )1 2 3 4, , ,T T T T  and each of them 

consists of two subtasks ( )1 2,t t , then we have totally 8 subtasks. Also, we have two physical machines 

( )1 2,PM PM  that 1PM  has three virtual machines ( )1 2 3, ,VM VM VM  and 2PM  has two virtual machines 

( )4 5, .VM VM  The initial solution, which is generated randomly, is given in Table 2. As it can be seen in Table 1, 

task 1t  and 4t  are allocated to 1VM , task 2t  and 7t  are allocated to 2VM , task 5t  is allocated to 3VM , task 3t  

and 6t  are allocated to 4VM , and finally task 9t  is allocated to 5VM . 

Table 1: Initial solution encoding. 

 
1t  2t  3t  4t  5t  6t  7t  8t  

1VM  1 0 0 1 0 0 0 0 

2VM  0 1 0 0 0 0 1 0 

3VM  0 0 0 0 1 0 0 0 

4VM  0 0 1 0 0 1 0 0 

5VM  0 0 0 0 0 0 0 1 

 

 

Step 2: Multi-objective model 

 

To formulate the objective function of the proposed algorithm, control parameters are defined. The multi-objective 

model includes four control parameters. The problem can be formulated by using Eq. (23). 
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 1 2min totalfitness c C c M=  +    
(23) 

 

Where totalC  is the total cost including the cost function of CPU, memory and migration, and M  is the makespan. 

1c  and 2c  are control parameters with the range of  0,1 . All these control parameters are assumed as 1 in this 

work for simplicity.  

 

The total cost, totalC , is defined by using Eq. (24), 

 

total CPU Memory MigrationC C C C= + +   (24) 

 

 

where CPUC is the CPU cost of the virtual machine, MemoryC is the memory cost of the virtual machine, and 

MigrationC is migration cost. CPUC  can be calculated using Eq. (25), 

  

( )
1

VM

CPU CPU

j

C C j
=

=   

(25) 

 

where ( )CPUC j represens the CPU cost of the virtual machine jV , VM  is the total number of virtual machines. 

Then, ( )CPUC j  can be calculated using Eq. (26) by considering the expected time to complete ( ijETC ) of i th 

task ( iT ) on j th virtual machine ( jVM ) and the CPU cost of virtual machine (
_ CosCPU t

jVM ) for unit time,  

 

( ) _ CosCPU t

CPU ij jC i ECT VM=   
(26) 

 

The memory cost of the virtual machine jV  is calculated using Eq. (27) by considering the ijETC  and the memory 

cost of virtual machine (
_ CosMemory t

jVM ) for unit time, 

 

( ) _ CosMemory t

CPU ij jC i ECT VM=   
(27) 

 

 

The migration cost MigrationC  consists of movement factor (
FM ) and cost factor (

FC ), and is calculated using Eq. 

(28) [32], 

 

2

F F

migration

M C
C

+
=  

(28) 

 

1

1
VM

F

j

Number of movements
M

PM Total VM=

  
=   

  
  

(29) 
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1

VM

F

j

Cost to run Memory of task
C

VM PM=

 
=  

 
  

(30) 

 

 

The second parameter of fitness function is the total makspan ( M ) which is the completion time of all task. 

Consider ijM  is the completion time of task iT ,  1,..., ,i n=  on virtual machine jVM ,  1,...,j r= , and 

initially can be calculated using Eq. (31), 

  

ij ij iM ECT W= +  (31) 

 

where ijETC  represents the expected time to complete of i th task ( iT ) on j th virtual machine ( jVM ) and iW  

represents the waiting time of of i th task ( iT ) on jVM . Then, the total makspan ( M ) can be calculated by Eq. 

(32), 

 

1

n

ij

i

M M
=

=  
(32) 

 

Algorithm 1: Pseudo-code of HCGWO algorithm for Task Scheduling  

 Input: User Tasks T, Virtual Machines V 

     Parameters of HCGWO Algorithm 
 Output: The tasks are scheduled on the virtual machines 

1: Begin 

2:      Randomly generate the initial population of wolves; 

3:      Evaluate the fitness of each wolf; 

4:      Set X
 to be the best wolf; 

5:      Set X  to be the second best wolf; 

6:      Set X
 to be the third best wolf; 

7:      while (Current_Iteration<Max_Iterations) do 

8:           for each wolf do 

9: 

10: 

            Update the position using Eq. 5; 

            Perform Greedy Seach strategy using Eq. 19; 

11:           End for 

12:           Calculate the mutation and crossover probability of each individual; 

13:           for each wolf do 

14:              if rand(0,1)<Cr then 

15:                 Perform crossover using Eq. 16;         

16;              End if 

17:              if rand(0,1)<Mr then 

18:                 Perform mutation using Eq. 13;          

19:              End if 

20:           End for 

21:           Update a, A, and C using Eq. (12), (3), and (4) respectively; 

22:           Calculate the fitness of wolves; 

23:           Update X
, X and X

 

24:           Current_Iteration= Current_Iteration+1; 

25:       End while 

26;       Return X
; 
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27; End 

 

5. Result and Discussion 

This section analyzes the efficiency of presents the experimental results of Hybrid Chaotic grey wolf optimizer for 

task scheduling in cloud environment and presents the experimental results and the comparative discussion of the 

proposed method with other scheduling methods. 

 

5.1. Experimental Setup 

To illustrate the effectiveness of the proposed method, we have used a personal computer with Intel Core i7 

processor and 6GB memory running a 64-bit version of Windows 10 operating system. The proposed method is 

implemented on the CloudSim Cloud Simulator [33]. Cloudsim is a highly extensible simulation framework that 

allows modeling and simulating of Cloud computing infrastructures. 

 

 

5.2. Performance Metric 

To evaluate the performance of the proposed method, makespan and cost are used as the evaluation metrics. As a 

recall, they are described as follows: 

 

• Makespan: The makespan represents the total length of the schedule that is the total time required 

for executing all the tasks.  

• Cost: The cost represents the total cost required for scheduling tasks to virtual machines. 

 

5.3. Experimental Results 

In this section, the proposed method is evaluated based on makespan and cost. Here, at first, we assign the N number 

of task and M number of resources to schedule the task based on the makespan, the cost and fitness function. In this 

work, we have taken two set of configurations. Then the performance analysis is taken based on two sub divisions 

such as (1) Performance analysis with the population size of 10 and 25 iterations, (2) Performance analysis with the 

population size of 20 and 50 iterations. Simulation parameters are presented in Table 2. 

 

 

Table 2. Simulation Parameters 

Number of datacenter 2 

Number of host in datacenter 15 

Number virtual machines 50 

Number of tasks 100-400 

Length of task 5000-10000 MI 

MIPS of processing element 1000-2000 (MIPS) 

Number of PE per VM 5-10 

Number of Pes requirement 2-5 

Bandwidth 500-1000 (bit) 

RAM 512-2048 MB 

 

 

5.3.1 Performance Analysis on makespan 

At first, the proposed method is evaluated using  the population size of 10 and 25 iterations. Here, we compare our  

proposed HCGWO algorithm based multi-objective scheduling with Genetic Algorithm (GA), Particle Swarm 

Optimization, Cuckoo Search (CS), and Grey wolf Optimizer (GWO) based  scheduling algorithm. Fig. 4 represents 
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the makespan of the proposed method along with other methods for this experiment. The makespan of the proposed 

HCGWO and other algorithms on 25th iteration for population size of 10 is shown in Fig. 4a. As it can be seen, the 

performance of the proposed method based on makespan is the minimum in all cases. When the number of tasks is 

100, the makespan of the proposed HCGWO is 400 (ms) while it is 600 for using GA, 540 for using PSO, 480 for 

using CS, and 480 for using GWO. The average makespan improvement of proposed HCGWO is 23.15% in 

comparison with GA, PSO, CS, and GWO when the number of tasks is 100. When the number of tasks is 200, the 

makespan of the proposed HCGWO is 620 (ms) while it is 720 for using GA, 680 for using PSO, 700 for using CS, 

and 620 for using GWO. The average makespan improvement of proposed HCGWO is 14.16% in comparison with 

GA, PSO, CS, and GWO when the number of tasks is 200. When the number of tasks is 300, the makespan of the 

proposed HCGWO is 800 (ms) while it is 990 for using GA, 900 for using PSO, 680 for using CS, and 700 for using 

GWO. The average makespan improvement of proposed HCGWO is 11.33% in comparison with GA, PSO, CS, and 

GWO when the number of tasks is 300. When the number of tasks is 400, the makespan of the proposed HCGWO is 

1010 (ms) while it is 1180 for using GA, 1100 for using PSO, 1090 for using CS, and 1080 for using GWO. The 

average makespan improvement of proposed HCGWO is 9.10% in comparison with GA, PSO, CS, and GWO when 

the number of tasks is 400. Fig. 4b represents the makespan of the proposed method and other methods on 50th 

iteration with the population size of 20. In this experiment, the performance of the proposed method based on 

makespan is the minimum in all cases, although the average improvement is less than the last experiment. With the 

increase of population size and iteration, the performance of all methods improves. When the number of tasks is 

100, the makespan of the proposed HCGWO is 400 (ms) while it is 590 for using GA, 540 for using PSO, 470 for 

using CS, and 480 for using GWO. The average makespan improvement of proposed HCGWO is 22.42% in 

comparison with GA, PSO, CS, and GWO when the number of tasks is 100. When the number of tasks is 200, the 

makespan of the proposed HCGWO is 600 (ms) while it is 800 for using GA, 700 for using PSO, 670 for using CS, 

and 670 for using GWO. The average makespan improvement of proposed HCGWO is 15.04% in comparison with 

GA, PSO, CS, and GWO when the number of tasks is 200. When the number of tasks is 300, the makespan of the 

proposed HCGWO is 800 (ms) while it is 990 for using GA, 900 for using PSO, 850 for using CS, and 850 for using 

GWO. The average makespan improvement of proposed HCGWO is 10.51% in comparison with GA, PSO, CS, and 

GWO when the number of tasks is 300. When the number of tasks is 400, the makespan of the proposed HCGWO is 

1000 (ms) while it is 1170 for using GA, 1110 for using PSO, 1070 for using CS, and 1080 for using GWO. The 

average makespan improvement of proposed HCGWO is 9.10% in comparison with GA, PSO, CS, and GWO when 

the number of tasks is 400. In overall, the proposed HCGWO can achieve 14.41% improvement for minimizing the 

makespan, compared to GA, PSO, CS, and GWO.  

 

(a) 
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(B) 

Fig. 4. Illustration of the makespan of the proposed HCGWO and other algorithms. (a) Makespan of the proposed 

HCGWO and other algorithms for the population size of 10 on iteration 25. (b) Makespan of the proposed HCGWO 

and other algorithms for the population size of 20 on iteration 50.   

5.3.2 Performance Analysis on cost 

Fig. 5 shows the performance analysis of proposed method based on the total cost. Here, we analyzed how  much 

amount of cost needed for task scheduling. Fig. 5a represents the total cost of the proposed HCGWO and other 

methods for the population size of 10 on iteration 25.  Our proposed approach achieves the  minimum cost for the 

population size of 10 on iteration 25 in all cases except when the number of tasks is 100. When the number of tasks 

is 100, the total cost of proposed HCGWO is 7.2633 while it is 8.2633 for GA, 8.0667 for PSO, 7.2633 for CS, and 

7.07 for GWO. The average cost improvement of proposed HCGWO is 4.83% in comparison with GA, PSO, CS, 

and GWO when the number of tasks is 100.  When the number of tasks is 200, the total cost of proposed HCGWO is 

7.0667 while it is 8.5733 for GA, 8.2633 for PSO, 7.4167 for CS, and 7.3670 for GWO. The average cost 

improvement of proposed HCGWO is 10.21% in comparison with GA, PSO, CS, and GWO when the number of 

tasks is 200.  When the number of tasks is 300, the total cost of proposed HCGWO is 7.4167 while it is 8.2633 for 

GA, 8.3670 for PSO, 7.8850 for CS, and 7.4167 for GWO. The average cost improvement of proposed HCGWO is 

6.88% in comparison with GA, PSO, CS, and GWO when the number of tasks is 300.  When the number of tasks is 

400, the total cost of proposed HCGWO is 7.6950 while it is 8.3667 for GA, 8.3667 for PSO, 7.8850 for CS, and 

7.8850 for GWO. The average cost improvement of proposed HCGWO is 9.26% in comparison with GA, PSO, CS, 

and GWO when the number of tasks is 400.  Fig. 5b represents the total cost of the proposed method and other 

methods on 50th iteration with the population size of 20. In this experiment, the performance of the proposed method 

based on total cost is the minimum in all cases, and the average improvement is more than the last experiment. 

When the number of tasks is 100, the total cost of the proposed HCGWO 7.07 while it is 8.2633 for using GA, 

8.2633 for using PSO, 7.2633 for using CS, and 7.07 for using GWO. The cost improvement of proposed HCGWO 

is 7.88% in comparison with GA, PSO, CS, and GWO when the number of tasks is 100. When the number of tasks 

is 200, the total cost of the proposed HCGWO 6.885 while it is 8.367 for using GA, 8.367 for using PSO, 7.367 for 

using CS, and 7.167 for using GWO. The cost improvement of proposed HCGWO is 11.47% in comparison with 

GA, PSO, CS, and GWO when the number of tasks is 200. When the number of tasks is 300, the total cost of the 

proposed HCGWO 7.07 while it is 8.5733 for using GA, 8.4167 for using PSO, 7.6667 for using CS, and 7.367 for 

using GWO. The cost improvement of proposed HCGWO is 11.33% in comparison with GA, PSO, CS, and GWO 

when the number of tasks is 300. When the number of tasks is 400, the total cost of the proposed HCGWO 7.2633 

while it is 8.5733 for using GA, 8.0067 for using PSO, 7.5732 for using CS, and 7.4167 for using GWO. The cost 

improvement of proposed HCGWO is 7.68% in comparison with GA, PSO, CS, and GWO when the number of 
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tasks is 400. In overall, the proposed HCGWO can achieve 8.69% improvement for minimizing the total cost, 

compared to GA, PSO, CS, and GWO.  

In addition, Fig. 6 shows the convergence of the proposed task scheduling method based on fitness function against 

other optimization methods for the population size of 10 and 20. The number of tasks used in Fig. 6a and Fig. 6b are 

100 and 400, respectively. Here we obtain minimum fitness value, compared with existing task scheduling methods. 

Minimum fitness function gives the high profit. When analyzing Figs. 4, 5, and 6, it is clear that our proposed 

approach achieves the better results, compared to other approaches. 

 

(a) 

 

(b) 

Fig. 5. Illustration of the total cost of the proposed HCGWO and other algorithms. (a) Total cost of the proposed 

HCGWO and other algorithms for the population size of 10 on iteration 25. (b) Total cost of the proposed HCGWO 

and other algorithms for the population size of 20 on iteration 50.   
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(a) 

 

(b) 

Fig. 6. Illustration of the fitness of the proposed HCGWO and other algorithms. (a) Fitness of the proposed 

HCGWO and other algorithms for the population size of 10 (Tasks=100) (b) Fitness of the proposed HCGWO and 

other algorithms for the population size of 20 (Tasks=400).   
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6. Conclusion 

In this paper, a multi-objective task scheduling method was proposed based on the Hybrid Chaotic grey wolf 

optimizer (HCGWO). In order to improve the performance of grey wolf optimizer, crossover and mutation operators 

from evolutionary algorithm and differential evolution are added to GWO. In addition, a greedy strategy and chaos 

theory are used to improve our hybrid GWO. Then, the multi-objective optimization approach is used to improve the 

scheduling performance, compared to single objective function. The multi-objective function consists of two 

important performance metrics such as makespan and cost. Finally, the fitness value is calculated by adding the 

makespan and the cost function. In HCGWO, each dimension of a solution represents a task and a solution as a 

whole representation of all tasks priorities. Two configurations with different simulation setups are used to evaluate 

the proposed method. The experimental results show that our proposed multiobjective-based task scheduling is 

better than other approaches. The results obtained from HCGWO are better than the existing GA, PSO, CS, and 

GWO based task scheduling methods, and experimental results demonstrated that the HCGWO based scheduling 

approach was well suited for task scheduling problem. 
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