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ABSTRACT
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1. Introduction

In 1950, Nakano [8] introduced the theory of modular spaces. The notion of modular metric
space, being a natural generalization of classical modulars over linear spaces, was recently
introduced. In 2012, Wardowski [10] introduced and studied a new contraction known as F-
contraction to establish some fixed point results as a generalization of the Banach contraction
principle. In 2014, Abdou and Khamsi [1] proved some fixed point results for multi valued
contraction mappings in the frame of modular metric spaces. In recent years, there was a strong
interest to study the fixed point property in modular function spaces.
On the other hand, in 2015, Khojasteh et al. [6] introduced the mapping known as the simulation
function and the perception of Z-contraction with regard to simulation function. Thereafter,
Roldan-Lopez-de Hierroet et al. [4] modified the notion of simulation functions and proved some
coincidence and common fixed point theorems utilizing the newly larger class of simulation

functions. In 2019, Kumar et al. [7] established some fixed point results via simulation functions.
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Recently, Arora et al. [2] extended the results for alpha-admissible contraction mapping with the
assistance of simulation function. Throughout this paper, Q,Z+, R+, R denote the set of all
rational numbers, the set of all positive integers, the set of all positive real numbers, and the set

of all real numbers, respectively.

2. Preliminaries
In 2010, Chistyakov [3] introduced the notion of modular metric spaces as follows:
Definition 2.1. [4] A function w;,: (0,0) X H X H — [0, 0] is said to be modular metric on
, if it satisfies the following axioms:
(1) x = yifandonly if wy(x,y) = 0, forall A > 0;
(i) wy(x,y) =w (y,x), forallA>0and x,y € H;
(iii) wy(x, )= wy(x, 2) + wy(z,y), forallA>0and x,y € H.
Definition 2.2. Let f: X — X and a: X X X — [0,+0). Then, f is said to be a- admissible if
a(x,y) = 1= a(fx; fy) =1, foreachx,y € X.
Definition 2.3.[9] Let f: X —» X and a: X X X — [0,+). Then, f is said to be g- admissible
mapping with respect to p if B(x,y) = u(x,y) = B(fx; fy)) = u(fx, fy), foreach x,y € X.
The class of simulation functions was introduced by Khojasteh et al. in [6] as follows:
Definition 2.4.[6] The function ¢ : [0,00) X [0,00) — R is said to be a simulation function, if
the following properties hold:
(¢1)¢(0,0) = 0;
(¢2)¢(a,b) < a— bforalla,b > 0;
(¢3) if{a,}, {b,, }are sequences in (0, ) such that Tlll_r)glo {b,} = ¢, then
rlli_r}gosup((an,bn) < 0.
The authors in [6] utilized the above class of auxiliary functions to define Z-contractions as
follows:
Definition 2.4. Let (X,d) be a metric space, T: X — Xand{ € Z. Then T is called a
Z-contraction with respect to ¢ if the following condition is satisfied:
{(d(Tx,Ty);d(x,y) = 0,forall x,y € X.
Khojasteh et al. [6] proved the following result.
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Theorem 2.5.[6] Let (X, d) be a complete metric space and T: X — X be a Z-contraction with
respect toa certain simulation functiond, that is,

{(d(Tx,Ty);d(x,y) = 0,forall x,y € X.
Then T has a unique fixed point. Moreover, for every x, € X, the Picard sequence {T™x,}

converges to this fixed point.

In 2015, Roldan et al. [4] observed that the third condition (namely:3) is symmetric in both
arguments of ¢ but, in proofs, this property is not necessary. In fact, in practice, the arguments
of ¢have different meanings and they play different roles. Then, they slightly modify the
condition {5 as follows:

(¢5") if {a,.}, {by,}are sequence in (0, o) such that 7113}10 {b,} = ¢, then

lim sup{(a,, b,,) < 0.
n—->oo

Example 2.6.(see[4, 5, 6]) We define the mappings ¢;: [0,00) X [0,00) — R for
i =1,2,3,4,5, as follows:
Next, we present some examples of simulation functions:

1. ¢3(a,b) = Ab —a, Va,b € [0,0), where A € [0,1).

2. ¢,(a,b) =—=, va,b € [0,).

b+1’
3. ¢ (a,b) =y(b) —yY(a) Va,b € [0,), where ¢,y € [0,0) — [0, 0)are two
continuous functions such that ¥ (a) — ¢(a) = 0 ifand only if a = 0 and ¥(a) <
a < ¢(a), Va > 0.
4. {(a,b) =b—n(b) —a, Va,b € [0,), wheren : [0,00) — [0,0) is a lower
semi continuous function such that n(a) = 0 if and only if a = 0.
5. ¢s(a,b) =b— [ 'p(u)du, Va,b € [0,00),where ¢ : [0,00) — [0,00)isa
function such that f, ¢(a)da, existsand f, ¢(a)da, foreach e > 0.
3. Main Results
Let Ar be family of all functions F: (0, ) — R such that
(F;) F is strictly increasing, that is, for all a, b € [0, ),
ifa < b, then F(a) < F(b).

(F,) For each sequence a,, of positive numbers,
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lim a,, = Oif and only if lim F( a,) = —oo.
n—-oo

n—->oo

(F3) There exists k € (0,1) such that
: k —
(}Lrgl+(a F(a)) = 0.

Let A; denotes the set of all functions J: R, — R, satisfying:
(J) forall sq,s5,s3,5, € R, with s54.5,.55.5, = 0, there exists T > 0 such that
J($1,52,53,84) = T.
Definition 3.1. Let (H, w,) be a modular metric space and S;: H — Hbe the self-map on
(H, ). Imagine that g, u : H X H — [0, ) be two mappings. Then, S;is generalized (8 — )
contractive map with respect to ¢ if u(x Tx) < B(x,y), 1 > 0and w,(S;x,S;y) >0 =
$U (@ (x, 81%), w3 (3, $13), w3 (x, 51¥), w3 (7, S1%)) + F(w3(S1x, S19)), F (w3 (x, ¥))) = 0, (3.1)
where ] € A; and F € Ap.
Theorem 3.2. Let (H, w;) be a complete modular metric space. Let S;: H — H be
generalized (8 — p) contractive map with respect to ¢, which fulfills the following conditions:
(i) There exists x, € # such that B (xy, S1x0) = u(xg, S1x0);
(ii) S, is B- admissible with respect to u;
(iii) S; is B — u — continuous mapping.
Then, S; possess a fixed point. In addition to this, S; possess a unique fixed point if
B(x,y) = ulx, x)Vx,y € Fix(S,).
Proof. Let us choose a point x; € H such that x; = S;x,. Continuing this process, we can
choose x,,1 in H such that
Xns1 = S1Xp. (3.2)
Since S; is - admissible w.r.t i, we have
B (x0,21) = B(x0,S1x0) = u(x0, S1%0) = u(x0, 1),
which implies that, B (xy, x1) == u(xg, x1).
Using induction, we get
B(xXn, Xns1) = t(xXp, Xpe1), VR =012, ... (3.3)
If x,,+1 = x,, for some n, then by (3.2), we obtain that S; possess a fixed pointat x = x,,4

and so we have completed the proof. Further, we assume that w; (S;x,, S1Xn+1) > O.
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Puttingx = x, and y = x,44 in (3.1), we get
0 < {(J(walxn, S123), 0 (xnt1, S1Xn+1), W Oy S1Xp41), 02 (Xn1, S1%0)
+ F (w3 (S120, S12n41), F (w03 (e, Xp41)))
= {(J (02 (xn Xn41), 03 (1, Xna2), 02 (X, Xt2), 02 (Xng 1) Xnv1)
+ F (w03 (n 1, Xna2), F(@0n (xn, Xn41)))
< F(w)l(xn: xn+1)) - ]((w/l(xn’ Xn41) W3 (Xn1, Xns2), WA (Xn, Xny2), 03 (Xn g1, xn+1)) +

F(wp(Xn41, Xn42),

which indicates that
](((U/’L(xw Xn+1), W3 (Xng1) Xn42), 03 (X, Xpg2), 03 (X1, xn+1)) + F(wp(Xns1, Xne2) <

F (w03 Gtn Xns1)). (3.4)
Thus,
J (@3 Gy Xng1), 03 (g1, Xna2), 02 (xn, Xnt2), 0) + F((‘)/l(xn+1' xn+2)) =< F(w,l(xn, xn+1)).

Now,

w3 (X Xn41), W3 (X1, Xnt2), 03 (Xn, X 42), 0 = 0.

From (H), we can find 7 > 0 so that

J (3 (X, Xn 1), 03 (Xp g1, Xna2), 03 (X, Xn42), 0) = T

With the assistance of (3.4), we acquire
F(w3(Xn+1,%n42)) < F(@03(xn, Xp41)) — T.
Therefore,
F(@02(tne1, ¥ns2)) S F(@2 0t %n41)) = ©
< F(w,l(xn_l,xn)) — 2T

< F(w,l(xn_z,xn)) — 37

< F(a)l(xo,xl)) —nrt,

which implies that

F(wl(xn+1;xn+2)) =< F(wa(xo'xﬂ) -—nt (3.5)
Letting n — oo in (3.5), we acquire
F(wl(xn+11xn+2)) — =® (36)
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With the assistance of (3.6) and property of F € Ag, we get
Ai_r)rolo(a)l(xnﬂ,xn”)) = 0.
For every § > 0 however small, 3 m € Z,, so that
Wy (Xps1, Xnan) < 6, vn = m.
Let us imagine that g > n.
Forq%n> 0,3 q"%ne Z. so that

1) na
w X X <—,Vn=—.
qi_n( n+1» n+2) q—n’ q-n

Further, we have

wl(xn'xq) S w 2 (Xpt1 Xn42) + 0 2 (Xniz, Xnyz) + o+ @ 2 (Xg-1,%4)
q-n q-n q-n

forall g,n > q’%, which implies that {x,} is a Cauchy sequence. Due to completeness property

of (H,w;),3u € w,;, so that x, — u, when n — c. But §; is S — u —continuous and
1 (xn, Xnt1) < B(xn, Xn11), S1Xn41 = Xpi2 — S1u, When n — oo
Consequently,
u = lim x,,;; = lim S;x,41 =S4,
n-co n-co
which proves that u is a fixed point of S;.
Next, we show that S; has almost one fixed point.
On the contrary, we suppose that u and v are two fixed points of S;such that
Sju=u#v=_5.
0 < ¢((wa(u, $1%), wa (¥, $1¥), wa (x, $1¥), wa (v, $1%)) + F(w3(S1%, $1)), F (w1 (x, ¥)))
= ¢(J(0,0, w3 (x, 1), w3 (v,5:%)) + F(03(S1%,517)), F (w;(x,¥)))
< F(w2(%,3)) = J(0,0, w3 (x, $13), w2 (v, $1%)) + F(w;(S1%, 513)),
which indicates that
](0,0, w;(x,S1y), w, (v, Slx)) + F(wl(Slx, Sly)) =1,
which shows that
T+ F(a),l(Slx, 513’)) =< F(a))l(x, }’)),

which is contradiction. So, our supposition is wrong.
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This proves that the fixed point of S; is unique.
Example 3.3. Consider H = [0,3] associated with the metric

1
wy(x,y) = Z lx — yl,

for all x, y € H. Define the mappings S;: H — H by
1
—e*x ifx€EQ

11
51x = 1

ﬁe ‘xif xeER—Q

with B(x,y) = x + y and u(x,y) = %. Let/J: R.* — R be defined as J(sy, S,, S3,54) = T and

t+2

J: R, — R bedefinedas F(n) =Ins. Let{: H X H — R be defined as {(t,s) =s ——t.

t+1
Itis clear that B(x,y) = u(x,y) = B(S:x,51y) = u(S;x,S,y), which shows that S; isan g —
admissible mapping with respect to u.
Casel: When x,y € Q.
Let u(x,Tx) < B(x,y), then

1 1
wy(S1x,51y) = 128 Tlx -yl < 7€ Tx —yl =eTFwix, y).

((T + F(w/'l(slx' Sly)),F(w;L(x, y))) = {(T + In((‘)/l(slxr Sly))rln((‘)/l(x' y)))

|x—y]
_{(T+1—Me Tlx —y|, In=2 y)
_ _ lx=yI |x=yI
={(t—t+1In 11/1,1 o )
={(z,112)
z+2 z
_11Z_(z+1)5

_22z(z+1)-z(z+2)
- 2(z+1)
_ 2222+22z-2%-22)
- 2(z+1)

_ 2122420z
T 2(z+1)

Hence, S, is generalized (B, u) contractive map with respect to (.
Case 2: Whenx,y € R - Q.
Let u(x,Tx) < B(x,y), then

1
w;(S1x,51y) = 776 Tx—yl < ze‘f lx —y|l = e T wy(x,y).
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Now,
{(r+ F(w/l(Slx' 51}’)),1:(0)/1(95» 3’))) ={(t+ In(a),l(Slx, 51}’)),171(0)/1(95' J’)))

_ i —-T _ |X—Y|
=+ e x—yl, M=)

Ix—yl’ I Ix—yl)

=({(t—1t+In 1 7

= ((z,172)
z+2 z
(z+1) 2

_34z(z+1) —z(z+2)
B 2(z+1)
3427 + 34z — 2% — 22)
B 2(z+1)

_ 3322432z
T 2(z+1)

=17z —

> 0.

Hence, S, is generalized (B, u) contractive map with respect to .
Case 3: Whenx € Q,y e R— Q.
Let u(x,Tx) < B(x,y), then

1 1
wy($1x,51y) =—=—e " lx—y| < ze‘f lx —y| = e T wy(x,y).

171
((T + F(wl(sle 513’))»}7((01(95: y))) = Z(T + In(wl(slx' 51}’))'171(001(95» Y))
= Z(T+1n%e‘f %—% ,In ?| > 0.

In all cases, S; is generalized (B, u) contractive map with respect to ¢.
Consequently, all conditions of Theorem 3.2 fulfilled and note that zero is a fixed point of S;.
Corollary 3.4. Let (H, w;) be a complete modular metric space. Let S;: H — H be self
mapping with respect to ¢, which fulfills the following conditions:

0] There exists x, € £ such that B(x;, S1x0) = u(xq, S1x0);

(i) Syis B — admissible with respect to y;

(iii)  S;is B — u contractive mapping;

(iv)  IMfulx,Tx) <B(x,y),A>0and w;(S;x,5.y) > 0=

{(t + F(w3(S1%,5:%)), F (wa(x,¥))) = 0.

wheret > 0 and F EA.
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Then, S; possess a fixed point. In addition to this, S; possess a unique fixed point if S(x,y) =
Au'(xi x)r Vx!y € le(Sl)

Proof. By inserting J(sy, S, S3,S4) = min{sy, s,, S3, 54} + 7 in Theorem 3.2, we get the result.

Corollary 3.5. Let (H, w;) be a complete modular metric space. Let S;: H — H be self
mapping with respect to ¢, which fulfills the following conditions:

{(t + F(w3(8:x,519)), F(wy(x,¥))) = 0,
wheret > 0 and F €Ap. Then S; has a unique fixed point.
Proof. By insertingB (x,y) = u(x,x) = 1,Vx,y € in Theorem 3.2, we deduce the result of
Wardowski [10] in the frame of modular metric space.
Corollary 3.6. Let (H, w;) be a complete modular metric space. Let S;: H — H be self
mapping with respect to ¢, which fulfills the following conditions:

{(t + F(wp(S1%,51Y)), F(w(x,y))) = 0,
Then S; has a unique fixed point.
Proof. By inserting B(x,y) = u(x,x) =1, Fx = x and T = 0Vx,y € H in Theorem 3.2, we
deduce the result of Khojasteh et al. [6] in the frame of modular metric space.
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