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Abstract

In this article we found inverse majority neighborhood number ny!(G) of a Nanotori topological
network. This number helps to identify the majority data communication nodes.

Introduction

Nanotubes have hexagonal atoms that are bonded to three other carbon atoms. The discovery of
nanotubes led researchers to conclude that carbon nanotorus molecules, or carbon molecules made
by glueing the two ends of a nanotube together, could exist as well. An experimental proof of such
molecules appeared soon after.

Further investigation revealed that these carbon nanotorus molecules possess a diverse range of
properties. Certain carbon nanotori species have unusual magnetic properties, such as persistent
magnetic moments at near zero flux and massive paramagnetic moments, as well as a wide range
of electric properties: some nanotori are conductors, while others are semiconducting or insulators.

The properties of carbon nanotori are strongly related to their geometrical parameters, temperature,
and the parameters of the nanotube used for their production. Carbon nanotori's properties are
highly influenced by their geometrical parameters, temperature, and the parameters of the
nanotube used to make them [10,32,33],[21,22,23].
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Nanotubical graphs (also known as nanotubes) are graph representations of nanotubular molecules.
Nanotubes are thus 3-connected, infinite, cubic planar graphs with a tubular form when expressed
in space. A nanotube is created by defining objects (vertices, corners, and faces) lying on two
parallel lines in a planar hexagonal grid, i.e. a hexagonal grid is rolled into a tube.

The topology of a network is represented using graphs. Multiprocessors are shown as graphs, with
vertices representing processors and edges representing connections between them. The topology
of an interconnection network is critical since it determines the network's efficiency. Meshes and
tori are two of the most popular multiprocessor networks on the market today. In this research
work we found Graph theoretic parameter are analyzed that is inverse majority neighborhood
number of a T U C4Cg[a, b]. This number identify the nodes which are communicated with
majority nodes.
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Theorem 1.1
. 1 a(6b-1)
For the graph G be the T U C, Cg[a, b] nanotori then a > 2,b = 2 then n,'(G) = [T]

Proof:

Let G bethe T U C,Cg[a,b] nanotori then a > 2,b = 2 where a is the number of squares in a
row and b is the number of rows of square. |V(G)| = 4ab and |E(G)| = 6ab — a.

Let Sy = {V31,V32, ) V32, V51, V52, V4, Vses - Vs(j—2)} Where j = 2a with minimum cardinality
|Sm| = [na 2] Let Sy be the inverse neighborhood set with respect to Sy;. The vertex set Sy =
{V41,V42, .- V4a ,V21'V22,V24, V26’ . Vz(]_z)} Where ] — Za SM covers the Edges |(N[SM]>| —

3 (a + (a - EJ)) > [@] = E] and the vertices |N[Sy]| = 4a+ 3 ((a - EJ) - 2) + (b +
2) > [4ab
|[*==22] - 1 then |IN[S} 1) = 3 (a +(a- |2 j)) —(b+1) < [=
inverse majority neighborhood set. Hence |Sy| = a + (a — l J) = nl(G) = [

= 2ab = [E] Therefore Sy is inverse majority neighborhood set. Suppose |Sy| — 1 =
6ab—-a

] = [9] . Therefore S is not
a(6b—1)].
6

Theorem 1.2

17a

For the graph G be the T U C, Cg[a, b] nanotori then a = 2,b = 3 then n;}(G) = [

Proof:

Let G bethe T U C,Cg[a,b] nanotori then a > 2,b = 3 where a is the number of squares in a
row and b is the number of rows of square. |[V(G)| = 12a and |E(G)| = 17a.

Let  Sm = {V31,V32, -, V3a, V61, V62, =) Vear Va1, Va2, Vga, Vge, - Vg(j-2)} Where j=2a  with
minimum cardinality |Sy| = [17a] Let Sy be the inverse neighborhood set with respect to Sy;.

The Vertex Set SM - {V41, V42, .- V4a ,V71’V72 ) o V7a, V21'V22,V24 V26 Vz(] 2)} Whel'e ] - Za
17a

Sy covers the edges [(N[Sy])| =3 (a(b -1+ (a - EJ)) [— = [ ] and the vertices

IN[Siy]I —4(2a)+3((a—[J)—2)+(b+1)>[
majority neighborhood set. Suppose [Sy|—1 = ﬂ —1 KN[SuDI =3 (a(b -1+ (a -

123 — 6a = H Therefore S}, is inverse

H)) b < [m H . Therefore Sy, is not inverse majority neighborhood set. Hence |Sy| =
a(b—1)+(a—H):>n LG) = [17a

Theorem 1.3
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For the graph G be the T U C, Cg[a, b] nanotori then a > 2,b = 4 then n;}(G) = [23a

Proof:

Let G bethe T U C,Cg[a, b] nanotori then a > 2,b =4 where a is the number of squares in a
row and b is the number of rows of square. |V(G)| = 16a and |E(G)| = 23a.

Let  Sm = {V31,V32, ) V3a, V61, V62 +» Vear Vo1, Vo2, =) Voa, V11 1, V11 2, Vi1 4 Vi1 65 o Vi1G- 2}
17a
where j = 2a with minimum cardinality |Sy| = [ ] Let Sy, be the inverse neighborhood set

with respect to SMm- The vertex set Sm =

L 1A
{Va1, Vaz, s Vaa s V71 V72, s V72, V10 1, s Vio a» V21,Y22, Voa Vae, - V2(j—2)} Where j = 2a. Sy
23a

covers the edges [(N[Sy])| = 3(3a+(a— EJ)) [— = H and the vertices |N[Sy]l =

4(3a) + 3 ((a - FJ) ) +b> [163 =8a= E] Therefore Sj, is inverse majority
neighborhood set. Suppose |Sy| — 1 = [@ —1 (N[SMDI =3 (3a + (a - l J)) —b-1<
[ﬁ] = [3] Therefore Sy, is not inverse majority neighborhood set. Hence |Sy| = 3a+

()= o= 2]

Theorem 1.4

For the graph G be the T U C, Cg[a, b] nanotori then a > 2,b = 5 then n;}(G) = [293

Proof:

Let G bethe T U C,Cg[a, b] nanotori then a > 2,b =5 where a is the number of squares in a
row and b is the number of rows of square. |V(G)| = 20a and |E(G)| = 29a.

Let Sm =
{V31, V32, -+ V32, Vo1 s Vear Vot ) Voa, V12 1, V12 20 s Vizar Via 1, V14 2, V14 4 ---V14(j—2)}
where j = 2a with minimum cardinality [Sy| = [2%] Let Sy, be the inverse neighborhood set
with respect to Sy. The vertex set

Sm = {Va1, ) Vaa y V7155 V7a, V101, - V10a, V131, -2 V13a,V21,V22, V24 V26, - V2(j- 2}
where j = 2a. S}, covers the edges [(N[Sy])| = 3 (4a + (a - EJ)) [2%] [ ] and the vertices

IN[S4]I —4(4a)+3((a—[J)—2)+(b—1)>[
majority neighborhood set. Suppose [Sy|—1= @ —1 N[S]) =3 (Sa + (a _ l D) _

2%l = 10a = [E]. Therefore S}, is inverse

b-2)<|=
4a+(a—“):>n 1(G)—[ﬁ .

Zga] = [ ] Therefore Sy, is not inverse majority neighborhood set. Hence |Sy| =

Theorem 1.5
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For the graph G be the T U C, Cg[a, b] nanotori then a > 2,b = 6 then n;}(G) = [353

Proof:

Let G bethe T U C,Cg[a, b] nanotori then a > 2,b = 6 where a is the number of squares in a
row and b is the number of rows of square. |V(G)| = 24a and |E(G)| = 35a.

Sm =

{V31 ) V32, Vo1, ) Vear Vo1, =) Voa, V12 1 - Vizar Vis 1+ Vis a V17 1 V17 2, V17 40 - = V17(- 2}
where j = 2a with minimum cardinality |Sy| = [353] Let Sy, be the inverse neighborhood set with

respect to Sy.

Sm =

{Va1) ) Vaa V71, s V72, V1015 o) V102 VI3 1 s V13 0 Vie 1 s Vis @ V21, V22, V2o - V2(j-2) }
where j = 2a. Sy, covers the edges |[{N[Sy])| = 3 (Sa + (a - EJ)) > [3752‘] = E] and the vertices
IN[Sil —4(5a)+3((a—“)—2)+(b 2)> [£2
majority neighborhood set. Suppose |Sy|—1= 3—5‘?‘ -1 N[Sy]I =3 <5a + (a - l J)) -
(b—3)< [ = H Therefore Sy, is not inverse majority neighborhood set. Hence |Sy| =

5a + (a— l J) = n;l(G) = [35a

28l = 12a = [9]. Therefore S}, is inverse

35a

Theorem 1.6

For the graph G be the T U C, Cg[a, b] nanotori then a > 2,b = 7 then n;}(G) = [Ma

Proof:

Let G bethe T U C,Cg[a, b] nanotorithen a > 2,b = 7 where a is the number of squares in
arow and b is the number of rows of square. |V (G)| = 28a and |E(G)| = 41a.
SM =

{V31 ) V30, V61 ) Ve Vo1, +» Voas V12 1 s V12w V15 1 = Visa V18 1+ V1s ar V20 1 V20 2
V20 4» - V20(j—2)} Where j = 2a with minimum cardinality |Sy| = [41a] Let S,, be the inverse
neighborhood set with respect to Sy- Sy =
Va1, ) Vaa V715 V70, V1015 -0 V100 V13 10 0 V13 @ V16 1)

3 V16a V191 V19 a»r V21, V22, Vaas - V2(j—2)} Where j = 2a. Sy, covers the edges [(N[Sy])| =
3 <6a +(a- [EJ)) 22| = 2| and the vertices IN[S};]l = 4(6a) + 3 ((a - 5) - 2) +
(b-3)>|% =
1S, —1= 41—“ —1KN[SyDI =3 (6a + (a - l J)) —(b—-4)< [35‘1] [3] Therefore S}, is

[41a

= 14a = H Therefore S;, is inverse majority neighborhood set. Suppose

not inverse majority neighborhood set. Hence |S;,| = 6a + (a - lEJ) = n}(G) =
Theorem 1.7
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For the graph G be the T U C, Cg[a, b] nanotori then a > 2,b = 8 then n;}(G) = [47a

Proof:

Let G bethe T U C, Cg[a, b] nanotori then a > 2,b = 8 where a is the number of squares in a
row and b is the number of rows of square. |[V(G)| = 32a and |E(G)| = 47a.
SM ==

{V31, - V30, V61 s Ve Vo1, o Vo V12 1 s V12w Vis 1 o Visa V1 1+ Vig a» V211, -+ V21 a
y V23 1, V23 2, V23 4, V23 65 - V23(j—2)} Where j = 2a with minimum cardinality |Sy| = [47a] Let
Sy be the inverse neighborhood set with respect to  Sy. Sy =
{Va1) s Vaqy V715 s V70, V101 s o0 V10a V13 15 oo

Vi3ar Vien V16w V1915 V19 a» V22 15 s V22 + V21, V22, V24, V26 - V(j—2)} Where j = 2a.

S1, covers the edges [(N[Si])| = 3 (7a + (a — [%J)) [47a = E] and the vertices [N[S}]| =

4(7a) + 3 ((a — [%J) — 2) +(b—-4)> [32a = 16a = H Therefore S;, is inverse majority

47a

neighborhood set. Suppose |Sy| —1 = [— —1 N[Sy )| =3 <7a + (a — l J)) - (b-=-5<

[47—‘1] = H Therefore S,, is not inverse majority neighborhood set. Hence |[Sy| = 7a +

(a-[f) = o =)
Theorem 1.8

For the graph G be the T U C, Cg[a, b] nanotori then a > 2,b = 9 then n;1(G) = [53a

Proof:

Let G bethe T U C, Cg[a, b] nanotori then a > 2,b = 9 where a is the number of squares in a
row and b is the number of rows of square. |V (G)| = 36a and |E(G)| = 53a.

Sy =

{vs1, - V3@, V61, ) Voas Vo1 ) Vous V12 1 +» V12 @ V15 10 -+ Vis @ V18 1+ ) V18 0 V2110 -+ V214
V24 15 -+ V24 s V26 1, V26 20 V26 40 - V26(j—2)} Where j = 2a with minimum cardinality |Sy| =

[537“ . Let S, be the inverse neighborhood set with respect to Sy. Sy =

{Vat) s Va V71, o V70, V1015 V10 a

yV131, V13 a, Vie1r =2 Vieaw V191,-+, V19 as V2215, V224

s V25 1) -2 V25 @ V215 V22, Vg s wes V2(j=2) } where j = 2a. Sy, covers the edges [{N[Sy )| =
a 53a ' a

3 <8a +(a- H)) =% = 2| and the vertices IN[S}]l = 4(8a) + 3 ((a - 5) - 2) +

(b—5)> [36‘1 = 18a = H Therefore S;, is inverse majority neighborhood set. Suppose

|S1\4| 1= [53(1

— 1 then (N[Sy])| = 3 (8a + (a - [ J)) —(b-6)< [Sga] [ﬂ] . Therefore

Sy, is not inverse majority neighborhood set. Hence |S;,| = 8a + (a — l J) = n,1G) = [53a

Theorem 1.8
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For the graph G be the T U C, Cg[a, b] nanotori then a > 2,b = 10 then n;}(G) = [Sga

Proof:

Let G bethe T U C, Cg[a,b] nanotube then a > 2,b = 10 where a is the number of squares in
arow and b is the number of rows of square. |V(G)| = 40a and |E(G)| = 59a.

SM =
{v31, s V30, V61 s Vo Vo1, s Voas V12 15 s V12 s V15 15 s Vis @y V18 15+ V18 s V211 5 Va1a
1724 1 = v24 ar U27 1y = ,U27 ar Uzg 1 1729 2,,1729 49 Uzg(]_z)}Where ] = Za Wlth minimum

cardinality |Sy| = [59a

] Let Sy, be the inverse neighborhood set with respect to Sy,. Sy =

{va1, -, Vaq, V71, -, V70,

V1015 V10a »V131,+V13a V1610 -+ Vi6ar V191, -1 V19 a» V22 1) > V22 )
U251 V250, V281, V284

y V21, V22, Va4, e, Vp(j—2) }  Where j = 2a. S covers the edges [(N[Sy])| =3 <9a + (a -

lﬁJ)) > [59_“] - [Q] and the vertices |N[Si,]| = 4(9a) + 3 ((a _ H) _ ) +(b-6)> [40a B

20a = [ ] Therefore S,, is inverse majority neighborhood set. Suppose |Sy| —1 = 59—“ -1

then |(N[SL])| —3(9a+(a—[ j))—(b 7 <|
59a

majority neighborhood set. Hence [Sy,| = 9a + (a - lEJ) = 1t (G) = [T :

53a] [;] . Therefore S;, is not inverse

Theorem 1.9
For the graph G be the T U C, Cg[a, b] nanotori then a = 2,b > 11then n;}(G) = [6‘”’—“]

Proof:

This T U C, Cg nanotori is denoted by T U C, Cg[a, b] nanotube where a is the number of
squares in arow and b is the number of rows of squares. |V(G)| = p = 4ab and |E(G)| = q =

6ab — a. V(G) =Y; UY,where Y, = {v21, V22, . V2, Vs1, - Vs, Vg1,
e Vg e V(b—1)1 s ) V(3p—1y;] Where j =2a and Y, =V(G) —Y; 3 {v4, ... vyq}. We choose
the vertex set Sy = V,(G)UV,(G) where V, (G) =
{vrl, wVray V)1 - V2ra = VIr(b-1]1 = Vlr(b-1)]a } where r=23 and Va Q) =
{v(3b—1)1,v(3b—1)2,v(3b—1)4,---v(3b—1)(j—2)} where Jj=2a. Therefore Sy =

{Vr1 - Vra Var 1 - Vera - Vir-nl1 - Vir-la V@b-1)1,Y(3b-1)2,V(3b-1)4 - - V(3b-1)(j-2) }
where r =3 and j = 2a. S, <V — Sy, be the inverse neighborhood set with respect to S,,.

Sy = Vy (G)uVy(G) where

Vi (G) = {Vs1, - Usay V(s+3)1s - V(s+3)ar -+ V(s+6)1r - V(s+6)as V[s(b-2)]1 -+ VIs(b-2)]a} WHETE s =
4 and
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VN (G) = {U21,U22,U24‘...v2(j_2) } WherEj =2a.

Therefore
Sy ={Vs1) o Vsas U(s+3)1 = V(s+3)ar = V(s+6)1s =+ V(s+6)ar V[s(b-2)]1» =+ V[s(b-2)]a» V21,V22 V24 - --

Va(j-2)} Where s =4 and j = 2a. S}, covers edges 3 (a(b -1+ (a - H)) > [632‘a] - E]

and the vertices |N[Sy]l =4(a(b—1))+3 ((a - EJ) - ) +4 > [4ab = 2ab = E]

6ab—a

Therefore Sy, is inverse majority neighborhood set. Suppose |Sy| —1 =[

KN[S])] = 3 (a(b ~D+(a-|2 j)) ~3< [
neighborhood set. Hence [Sy| = a(b— 1) + (a - [ J) = n'(G) = [

]— 1 then

6ab—-a

] = [ ] Therefore Sy is not inverse majority
6ab— a]
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