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Abstract

In this article optimal location are found through inverse majority neighborhood ny*(G) for 2D —
Lattice of T U C,Cg[a, b]. In this type of topology the number of optimal majority location are
identified for different structure.

Introduction

Between 1 and 100 nanometers, nanotechnology creates new structures. It develops a broad variety
of new materials and devices with applications in medicine, electronics, and computers.
Nanotechnology is expected to change the world in the twenty-first century. Nanocrystals,
nanowires, and nanotubes are the three main groups of nanomaterials, with the latter two being
one-dimensional. Since the discovery of carbon nanotubes in 1991, there has been a significant
increase in interest in one-dimensional nanomaterials. Nanotubes are 3-
D structures formed out of a 2-D lattice [21,22,23,24,32,33].

A Network is simply a connected graph no multiple edges and loops. The degree of a vertex is a
number of the vertices which are connected to that fixed vertex by the edges.

In this article the inverse majority neighborhood number are generalized for the structure 2D
Lattice nanotube.

Theorem 1.1

For the graph G be the 2D —Lattice of T U C, Cg[a,b], a = 2,b = 2 then n;;}(G) = [na—zl
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Proof:

Let G bethe 2D —Lattice of T U C, Cg[a, b] where a is the number of squares in a row and b is
the number of rows of square. [V(G)]=8a and |E(G)|=11la—-2. V(G) =
{U11, Urzs s Uggy Upq, oony Upjy Uzg, U, vy Uy Ugts wor s Usgs Usy, ey Usj, Usy, -+, Ugg) WHETE  j =
2a. {uj1,Ugp, ..., Uq} are the first row {u,y,..,uy;} where j = 2a are the second row
{usz1, usz, oo, Usa ) {Uans o Uag)s {Usq, o Usj ) {Ue1, .., Usq) Where j = 2a are the I, IV, V
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and VI rows respectively. | and VI row of each vertices and {uyq, ..., U14, Ug1, -» Ugg } HAVING
degree b. Third and fourth row of each vertex having degree (b + 1).

Case (i) a <3

Let Sy = {usq, Usy, ... Usg, Usy, Usy, Uss } - LEL S, be the inverse neighborhood set with respect to
Su- The vertex set Sy = {Ug, Uy, .., Uaq, Unz , Una , Uz} Where j = 2a.Then Sy, covers the edges

KN[S,D)| = 3 (a(b 1D+ (a- ([ j + 1)) +b> [“a 2] - [g] and the vertices |N[SL,]| =
4a+3(a—-1)+b> [8?‘1 =4a = H Therefore Sy, is the inverse majority neighborhood set.

Hence n;1(G) = |S},] = [11a 2

[11a 2]—1and|(N[SM])| :3(a(b—1)+(a—(a__4J+1)) [
1la— 2]
6

] Suppose Sy = {Ug1, Uy, oy Uggy Upp , Upg } then [Sy| —1 =

11a-2

] = [ ] Therefore Sy, is

not inverse majority neighborhood set. Hence n,;}(G) = |S;,| = [

Case (ii) a > 3

Let Sy = {uz1, Usz, o) Uzq, Usz , Usa, Use, - Us(j—2)} Where j = 2a  with minimum cardinality
|Sy| = [11a—2]. Let S,, be the inverse neighborhood set with respect to S,,. The vertex set S,, =
{U41, U42, ...,u4a ,u22 ,u24, u26, ...uz(j_z)} Where] = Za haV|ng edges

(N[Si D] =3 (a(b D +a— (= + 1)) =52 = 2] and NSl = b+ 2)(alb -
D)+ (b+1) (a - ([ J + 1)) [—] =4q = [3]. . Therefore S,, is the inverse majority
neighborhood set. Hence n;(G) =|Syl=a(b—1)+a— ([a—_‘}J + 1) [na 2] Suppose
ISyl = 1= [F5=2| - 1 then [(N[S},])] = 3 (a(b -D+a— (= + 1)) -3< === 4

11la— 2]
p .

Therefore S;, is not inverse majority neighborhood set. Hence n;1(G) = |Sy| = [
Theorem 1.2

For the graph G be the 2D —Lattice of T U C, Cg[a,b], a = 2,b = 3 thenn;1(G) = [17“—3]

6

Proof:

Let G bethe 2D —Lattice of T U C, Cg[a, b] where a is the number of squares in arow and b is
the number  of rows of square. V(G) = {v; (G),v, (G),...,v9(G)} where v, (G) =

{v11 V12, s V1ah v, (G) = {v21,v22, ---’sz}1 v3 (G) = {V31,V32, ey V3a}; v, (G) =
{V41,1742, ---:V4a}; v5 (G) = {vsy Vs2, ---'USj}’ V6 (G) = {V61,V62, ) Voa}: vy (G) =
(V71 V7g, s V70} Vg (G) = {vgy Vgy, ., Vgj}, o (G) = {vo1 vy, ..., v9q} Where j = 2a.
[V(G)| =12a and |E(G)| =17a—3. deg(vy (G),ve(G)) = (b—1) . deg(vs (G), v, (G),
Ve (G), v, (G)) =b.
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Case(i)a=2

17a-3

] . Let S}, bethe

inverse neighborhood set with respect to Sy,. The vertex set Sy, = {Va2, Vou, Va1, Vaz, V71, V72 }
KNS, = 3 (a(b ~D+a— (|3 + 1)) ra= 22 =1 and NSl =B+

D(ab-1)+b ((a — ([ J + 1)) +(b-1) > [12‘1 = 6a = [2]. Therefore Si, is the

Let Sy = {V31, V32, V61, Ve2, Vg2, Vga} With minimum cardinality [S,,| = [

17a-3

inverse  majority neighborhood set with cardinality |Sy| = [ ] Suppose |Sy|—1=

[2=2] — 1 then (NESi ] = 3 (a1 +a— (|52 + 1)) < [25=2] = [¢]. Therefore s, is

17a— 3]
P .

17a-3

not inverse majority neighborhood set. Hence n;}(G) = |S;,| = [

Case(i)a>2

Let SM :{1731,.. v3a,v61,.. 176a,1782 1784 v86 US(] 2)} Where _]:2a Wlth mlnlmum

[17a 3

cardinality |Sy,| = ] Sy<V — Sy be the inverse neighborhood set with respect to Sy,. Sy, =

{1241, ...v4_a, v71,..v7a, vzz, 1724_, 1726, ...172(]_2) } Where ] - 261 . EaCh SM covers exaCtly (b)
edges. |(N[S,]) =3 (a(b -D+a— (= + 1)) >[2=| =4  and IN[SH]I= (b +

D(a(b—1))+b ((a — ([aT_E}J + 1)) [12a = 6a = E] . Therefore S;, is the inverse

17a-3 17a-3

]. Suppose |Sy| —1 = [

17a— 3]

majority neighborhood set with cardinality |S,| = [ ] — 1 then

UN[SyD = 3<a(b—1)+a—([ ]+1)>—3 <=
majority neighborhood set. Hence n,;}(G) = |Sy,| = [

= E] Therefore S}, is not inverse

17a— 3]
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Example

Theorem 1.3

For the graph G be the 2D —Lattice of T U C, Cg[a,b], a = 2,b = 4thenn;;}(G) = [

23a—4]
6

Proof:

Let G bethe 2D —Lattice of T U C, Cg[a, b] where a is the number of squares in a row and b
is the number of rows of square. V(G) = {v, (G),v, (G),...,v12(G)} where v, (G) =

{v11 V12, s V1a b v, (G) = {v21,V22, ---:vzj}v v3 (G) = {%1,”32, ---:173a}' v, (G) =
{V41,V42, ey V4a}: vs (G) = {vs1,Vs2, ---:VSj}, V6 (G) = {Ve1 V62, - Vea ) v; (G) =
{Ve1 V62, 1 V6a} Vs G) = {U81,U82, ey Vsj}» vy (G) = {U91,U92, e U9a} , V10 (G) =

{1710 1,102, ---»U10a} vy, (G) = {V11 1,V112, ---'Ullj} vy, (G) = {1712 1, V12 a} where j =
2a.|V(G)| = 16a and |E(G)| = 23a — 4.

Let SM = {U41, iy Vaay V7155 V70, V10 15 - - » V10w UZZ, 1724, 1726, ...vz(j_z)} Where ] = 2a Wlth
[23a_4]. SycV — Sy, be the inverse neighborhood set with respect

6
1 . /
to SM SM = {vgl, - V30,V61,--Vgar»V91,--Voq, V112, V114, V11 6 ...vll(j_z)} where ] = 2a. SM

covers the edges 3 (a(b —D+a- ([aT_ZJ + 1)) . (i.e) KN[SyD] =3 (a(b —D+a-
(=3 + 1)) > [222| = [2] and IN[Sy]l = (B)(alb — D) + (b - 1) ((a - (=3 + 1)) >

minimum cardinality |Sy,| =
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[12—‘1 =8a = E] . Therefore S,, is the inverse majority neighborhood set . |S;,| = a(b — 1) +

(o= (152 +1)) = it =[]

23a—4

[=1 then Vsl =3(ato - +a~ (|52 +1))-3<

] = [ ] Therefore Sj, is not inverse majority neighborhood set. Hence n;}(G) = |Sy,| =

=

Suppose |Sy|—1= [

[23a 4

Theorem 1.4

For the graph G be the 2D —Lattice of T U C, Cg[a,b], a>2,b =5 thenn;}(G) = [29a—5]

6

Proof:

Let G be the 2D —Lattice of T U C, Cg[a, b] where a is the number of squares inarow and 5 is
the number of rows of square. V(G) = {v, (G),v, (G),..,v15(G)} where v, (G) =

{v11,V12, ) V1a}s v, (G) = {vp1 V22, ---,U2j}1 v3 (G) = {U31,U32, ---'U3a}' v, (G) =
{V41,V42, ey V4a}; vs (G) = {vs1,Vs2, ---:175j}, V6 (G) = {V61 V62, - Vea ) v; (G) =
{Ve1,V62, 1 V6a} Vg(G) = {1781,1782, e vsj}» vy (G) = {1791,1792, ey Vga} Vo (G) =

{1710 1,V102, ---;1710a} V11 (G) = {vn 1,V112, ---:1711j} vy, (G) = {1712 1, V12 a} , V13 (G) =
{viz1, - V1za}s v15(G) = {vi51, ., V154} Wherej = 2a. [V(G)| = 20a and |E(G)| = 29a —
5.

Let Sy = (Va1 o Vas V715 V705 V10 1 +» Vio@ V13 15+ -2 V13as V22, V24, Va6, - Va(j—2)} Where
. . - . . 29a-5

j = 2a with minimum cardinality |S,,| = [ = ] Syc<V — Sy, be the inverse neighborhood set
with respect to SM. Sy = {V31, V30, V61, - - Voa» Vo1, - - Vou,

1712 11y v12a, v14 2 v14 4y 1214 6 ...v14(j_2)} Where ] = 2a . SI(/I covers the edgeS 3 (a(b - 1) +

a— (|2 + 1)) . (i) KNSLD) = 3 (a(b -D+a-(|Z+ 1)) > 2= = 4]
INIS,Il = (b — D(alb — 1) + (b - 2) ((a - (1= + 1)) > [24] = 10a = [2] . Therefore
Sy is the inverse majority neighborhood set . |S;,| = a(b — 1) + (a — [—J + 1) = n;1(G) =

(22721, suppose I5iy] — 1 = [22=F] — 1 then [NTSj) = 3 (a(b ~D+a- (| + 1))
3< [29‘1 5] = [ ] Therefore S, is not inverse majority neighborhood set. Hence n;1(G) =
|S1\4| _ [29(1 5]

Theorem 1.5

For the graph G bethe 2D —Lattice of T U C, Cg[a,b], a = 2,b = 6thenn,;1(G) = [6‘”’““1’]

6

Proof:
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We consider the graph the sequence of C, Cg Cy, .... This 2D —Lattice of T U C, Cg is denoted
by T U C, Cg[a, b] where a is the number of squares in a row and b is the number of rows of
squares. |[V(G)|=p =4ab and |E(G)|=q=6ab—a—b. V(G) =X, UX,where X; =
{Ujl, Vj2, - Vj(2a), V(j+3)1 =+ Vj+3(2a), V(j+6)1 -1 V(j+6)(2a), ** V(3b=1)1 1 *+» U(3b_1)2a} where
j=2and X, =V(G) — X; 3 {vk1, - Vka}. Let Sy, be the inverse neighborhood set with respect
to Sy, . We choose the wvertex set Sy= V. (G)uV.(G) where V,.(G)=
{vklr Uk V21 - V(2Kk)a = Vk(b—1)1r + Vk(b-1Da } where k=3 and V; (G) =
{(Vi3p-1)2,VGb-1)4,---V(3b-1)(j-2) } where j=2a. Therefore Su

{Vk1) - Vka V1)1 - V2R =0 Vlk(=D]10 1 VIk(b-D]a » V(3b-1)2,V(3b-1)4 - - -V(3b-1)(j—2) }
where k=3, j=2a. |V (G)|=a(b—1) and |V;(G)| = (a —1). The vertex set V,
covers edges 3a(b —1) and V,(G) covers edges 3(a — 1) . S;, covers edges |{N[Sy])

3a(b—1) +3 (a (= 1)) > [*22=2| = [4] and IN[S}]l = 4(ab — 1)) + 3 (a =

2

v (G)
| =

(lMJ + 1)) . Therefore S;, is the inverse majority neighborhood set. |Sy| =a(b—1) +
(a — ([MJ + 1)) = n;1(G) = [6ab = b] Suppose  |Sy|—1= [Gab;a_b] —1  then
KN[Sy )| =3a(b—1) +3 (a — ([@J + 1)) 3< [Zga 5] = E] Therefore S,, is not

inverse majority neighborhood set. Hence

IS, =a(b—1) + (a - (=2 + 1)) = ny(6) = [*==2].

Results for Linear T U C4 Cgla, b]

Theorem

For the graph T U C, Cg[a,b] a=1,b =1 thenn,'(G) = [Sa_ll

6

Proof:

Let G be the linear T U C, Cgla, b] where a is the number of squares in a row and b is the
number of rows of square. V(G) = {v; (G), v, (G),v3(G)} where v, (G) = {v11 V12, ..., V1g}
vy (G) = {v21 V22, oo, U2}, V3 (G) = (V31 V33, ..., V3q} Wherej = 2a . [V(G)| =p = 4a and
|E(G)] = q =5a—1.

Case()a <4

Let Sy = {vy1 V2325 ----Vz(j—1),} where j = 2a with minimum cardinality |Sy| = [Sa:].

Su<V — Sy be the inverse neighborhood set with respect to Sy Sy = { vz, V24 V26, -, V2 }
Where = 2a . [(N[Sy])l =3((a— 1)+ (b + 1) 2 [*=| = [¢] and IN[S}]I = (b + 3)(a -

1) + (b + 2). Therefore S,, is the inverse majority neighborhood set. |Sy, | = (a—1)+1=a =
5a-1
(@) = [
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5a-1

Suppose [Sy| — 1 then (N[S;;]) =3((a—1)) < [
majority neighborhood set. Hence |S;,| = n,;}(G) = [

] = E] Therefore S}, is not inverse
5a 1]

Case (ii))a > 4

Let Sy = { V22, V24 V26, .- V2(j—2),} Where j = 2a with minimum cardinality |Sy| = [5':1].

Syc<V — Sy be the inverse neighborhood set with respect to Sy. Sy =
(V23 Vas Va7, oo V- } Where  j=2a.  KN[S; =3((a—1) = |*=]=[¢| and
IN[Sy]l = 4((a—1)) > [4—a =2a = [E]. Therefore S, is the inverse majority neighborhood
set. Hence |Sy| = [a—” —-1=n,1(G) = [Sa 1] . Suppose |Sy|—1 then |KN[SyDI =
3((a— 1)) -3< [5a 1] = H . Therefore S,, is not inverse majority neighborhood set.
Hence |S},] = n,;2(G) = [Sa 1]

Example
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