Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 3, June 2021: 4210-4219

Research Article

Inverse Majority Neighborhood number for 2D —Lattice of $T \cup C_4 C_8[a, b]$ Nanotube

T. Dhivya¹, I. Paulraj Jayasimman² and J. Joseline Manora³

Abstract

In this article optimal location are found through inverse majority neighborhood $n_M^{-1}(G)$ for 2D – Lattice of $T \cup C_4C_8[a,b]$. In this type of topology the number of optimal majority location are identified for different structure.

Introduction

Between 1 and 100 nanometers, nanotechnology creates new structures. It develops a broad variety of new materials and devices with applications in medicine, electronics, and computers. Nanotechnology is expected to change the world in the twenty-first century. Nanocrystals, nanowires, and nanotubes are the three main groups of nanomaterials, with the latter two being one-dimensional. Since the discovery of carbon nanotubes in 1991, there has been a significant increase in interest in one-dimensional nanomaterials. Nanotubes are 3-D structures formed out of a 2-D lattice [21,22,23,24,32,33].

A Network is simply a connected graph no multiple edges and loops. The degree of a vertex is a number of the vertices which are connected to that fixed vertex by the edges.

In this article the inverse majority neighborhood number are generalized for the structure 2D Lattice nanotube.

Theorem 1.1

For the graph G be the 2D -Lattice of $T \cup C_4 C_8[a,b]$, $a \ge 2$, b = 2 then $n_m^{-1}(G) = \left\lceil \frac{11a-2}{6} \right\rceil$.

Email Address: ¹dhivyasmile94@gmailcom,² ipjayasimman@gmailcom,³ joseline_manora@yahoo.co.in

Proof:

Let *G* be the 2*D* – Lattice of $T \cup C_4 C_8[a, b]$ where *a* is the number of squares in a row and *b* is the number of rows of square. |V(G)| = 8a and |E(G)| = 11a - 2. $V(G) = \{u_{11}, u_{12}, ..., u_{1a}, u_{21}, ..., u_{2j}, u_{31}, u_{32}, ..., u_{3a}, u_{41}, ..., u_{4a}, u_{51}, ..., u_{5j}, u_{61}, ..., u_{6a}\}$ where j = 2a. $\{u_{11}, u_{12}, ..., u_{1a}\}$ are the first row $\{u_{21}, ..., u_{2j}\}$ where j = 2a are the second row $\{u_{31}, u_{32}, ..., u_{3a}\}, \{u_{41}, ..., u_{4a}\}, \{u_{51}, ..., u_{5j}\}, \{u_{61}, ..., u_{6a}\}$ where j = 2a are the III, IV, V

¹Assistant Professor, Department of Mathematics, AMET Deemed to be University, Kanathur, Chennai, India

²Associate Professor, Department of Mathematics, AMET Deemed to be University, Kanathur, Chennai, India

³PG & Research Department of Mathematics, T.B.M.L College, Porayar, India

and VI rows respectively. I and VI row of each vertices and $\{u_{11}, ..., u_{1a}, u_{61}, ..., u_{6a}\}$ having degree b. Third and fourth row of each vertex having degree (b+1).

Case (i) $a \le 3$

Let $S_M = \{u_{31}, u_{32}, \dots u_{3a}, u_{52}, u_{54}, u_{55}\}$. Let S_M' be the inverse neighborhood set with respect to S_M . The vertex set $S_M' = \{u_{41}, u_{42}, \dots, u_{4a}, u_{22}, u_{24}, u_{2j}\}$ where j = 2a. Then S_M' covers the edges $|\langle N[S_M'] \rangle| = 3\left(a(b-1) + \left(a - \left(\left|\frac{a-4}{6}\right| + 1\right)\right) + b \ge \left|\frac{11a-2}{2}\right| = \left|\frac{q}{2}\right|$ and the vertices $|N[S_M']| = 4a + 3(a-1) + b > \left|\frac{8a}{2}\right| = 4a = \left|\frac{p}{2}\right|$. Therefore S_M' is the inverse majority neighborhood set.

Hence $n_m^{-1}(G) = |S_M'| = \left[\frac{11a-2}{6}\right]$. Suppose $S_M' = \{u_{41}, u_{42}, \dots, u_{4a}, u_{22}, u_{24}\}$ then $|S_M'| - 1 = \left[\frac{11a-2}{6}\right] - 1$ and $|\langle N[S_M']\rangle| = 3\left(a(b-1) + \left(a - \left(\left|\frac{a-4}{6}\right| + 1\right)\right) < \left|\frac{11a-2}{2}\right| = \left|\frac{q}{2}\right|$. Therefore S_M' is not inverse majority neighborhood set. Hence $n_m^{-1}(G) = |S_M'| = \left|\frac{11a-2}{6}\right|$.

Case (ii) a > 3

Let $S_M=\{u_{31},u_{32},\ldots,u_{3a},u_{52}$, $u_{54},u_{56},\ldots u_{5(j-2)}\}$ where j=2a with minimum cardinality $|S_M|=\left\lceil\frac{11a-2}{6}\right\rceil$. Let S_M' be the inverse neighborhood set with respect to S_M . The vertex set $S_M'=\{u_{41},u_{42},\ldots,u_{4a},u_{22},u_{24},u_{26},\ldots u_{2(j-2)}\}$ where j=2a having edges

$$\begin{split} |\langle N[S_M'] \rangle| &= 3 \left(a(b-1) + a - \left(\left\lfloor \frac{a-4}{6} \right\rfloor + 1 \right) \right) \geq \left\lceil \frac{11a-2}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil \text{ and } |N[S_M']| = (b+2) \left(a(b-1) + b + 1 \right) \left(a - \left(\left\lfloor \frac{a-4}{6} \right\rfloor + 1 \right) \right) > \left\lceil \frac{8a}{2} \right\rceil = 4a = \left\lceil \frac{p}{2} \right\rceil. \text{ Therefore } S_M' \text{ is the inverse majority neighborhood set. Hence } n_m^{-1}(G) = |S_M'| = a(b-1) + a - \left(\left\lfloor \frac{a-4}{6} \right\rfloor + 1 \right) = \left\lceil \frac{11a-2}{6} \right\rceil. \text{ Suppose } |S_M'| - 1 = \left\lceil \frac{11a-2}{6} \right\rceil - 1 \text{ then } |\langle N[S_M'] \rangle| = 3 \left(a(b-1) + a - \left(\left\lfloor \frac{a-4}{6} \right\rfloor + 1 \right) \right) - 3 < \left\lceil \frac{11a-2}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil. \end{split}$$
 Therefore S_M' is not inverse majority neighborhood set. Hence $n_m^{-1}(G) = |S_M'| = \left\lceil \frac{11a-2}{6} \right\rceil.$

Theorem 1.2

For the graph G be the 2D -Lattice of $T \cup C_4 C_8[a,b]$, $a \ge 2$, b = 3 then $n_m^{-1}(G) = \left\lceil \frac{17a-3}{6} \right\rceil$.

Proof:

Let G be the 2D —Lattice of $T \cup C_4 C_8[a,b]$ where a is the number of squares in a row and b is the number of rows of square. $V(G) = \{v_1(G), v_2(G), ..., v_9(G)\}$ where $v_1(G) = \{v_{11}, v_{12}, ..., v_{1a}\}, v_2(G) = \{v_{21}, v_{22}, ..., v_{2j}\}, v_3(G) = \{v_{31}, v_{32}, ..., v_{3a}\}, v_4(G) = \{v_{41}, v_{42}, ..., v_{4a}\}, v_5(G) = \{v_{51}, v_{52}, ..., v_{5j}\}, v_6(G) = \{v_{61}, v_{62}, ..., v_{6a}\}, v_7(G) = \{v_{71}, v_{72}, ..., v_{7a}\}, v_8(G) = \{v_{81}, v_{82}, ..., v_{8j}\}, v_9(G) = \{v_{91}, v_{92}, ..., v_{9a}\} \text{ where } j = 2a.$ |V(G)| = 12a and |E(G)| = 17a - 3. $\deg(v_1(G), v_9(G)) = (b - 1)$. $\deg(v_3(G), v_4(G), v_6(G), v_7(G)) = b$.

Case (i) $\alpha = 2$

Let $S_M = \{v_{31}, v_{32}, v_{61}, v_{62}, v_{82}, v_{84}\}$ with minimum cardinality $|S_M| = \left\lceil \frac{17a-3}{6} \right\rceil$. Let S_M' be the inverse neighborhood set with respect to S_M . The vertex set $S_M' = \{v_{22}, v_{24}, v_{41}, v_{42}, v_{71}, v_{72}\}$. $|\langle N[S_M'] \rangle| = 3\left(a(b-1)+a-\left(\left\lfloor \frac{a-3}{6} \right\rfloor+1\right)\right)+a \geq \left\lceil \frac{17a-3}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil$ and $|N[S_M']| = (b+1)\left(a(b-1)\right)+b\left((a-\left(\left\lfloor \frac{a-3}{6} \right\rfloor+1\right)\right)+(b-1)>\left\lceil \frac{12a}{2} \right\rceil = 6a=\left\lceil \frac{p}{2} \right\rceil$. Therefore S_M' is the inverse majority neighborhood set with cardinality $|S_M'| = \left\lceil \frac{17a-3}{6} \right\rceil$. Suppose $|S_M'| - 1 = \left\lceil \frac{17a-3}{6} \right\rceil - 1$ then $|\langle N[S_M'] \rangle| = 3\left(a(b-1)+a-\left(\left\lfloor \frac{a-3}{6} \right\rfloor+1\right)\right) < \left\lceil \frac{17a-3}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil$. Therefore S_M' is not inverse majority neighborhood set. Hence $n_m^{-1}(G) = |S_M'| = \left\lceil \frac{17a-3}{6} \right\rceil$.

Case (i) a > 2

Let $S_M = \{v_{31}, \dots, v_{3a}, v_{61}, \dots, v_{6a}, v_{82}, v_{84}, v_{86}, \dots v_{8(j-2)}\}$ where j=2a with minimum cardinality $|S_M| = \left\lceil \frac{17a-3}{6} \right\rceil$. $S_M' \subseteq V - S_M$ be the inverse neighborhood set with respect to S_M . $S_M' = \{v_{41}, \dots v_{4a}, v_{71}, \dots v_{7a}, v_{22}, v_{24}, v_{26}, \dots v_{2(j-2)}\}$ where j=2a. Each S_M' covers exactly (b) edges. $|\langle N[S_M'] \rangle| = 3\left(a(b-1)+a-\left(\left\lfloor \frac{a-3}{6} \right\rfloor+1\right)\right) \geq \left\lceil \frac{17a-3}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil$ and $|N[S_M']| = (b+1)\left(a(b-1)\right)+b\left((a-\left(\left\lfloor \frac{a-3}{6} \right\rfloor+1\right)\right) > \left\lceil \frac{12a}{2} \right\rceil = 6a = \left\lceil \frac{p}{2} \right\rceil$. Therefore S_M' is the inverse majority neighborhood set with cardinality $|S_M'| = \left\lceil \frac{17a-3}{6} \right\rceil$. Suppose $|S_M'| - 1 = \left\lceil \frac{17a-3}{6} \right\rceil - 1$ then $|\langle N[S_M'] \rangle| = 3\left(a(b-1)+a-\left(\left\lfloor \frac{a-3}{6} \right\rfloor+1\right)\right) - 3 < \left\lceil \frac{17a-3}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil$. Therefore S_M' is not inverse majority neighborhood set. Hence $n_m^{-1}(G) = |S_M'| = \left\lceil \frac{17a-3}{6} \right\rceil$.

Example

Theorem 1.3

For the graph G be the 2D -Lattice of $T \cup C_4 C_8[a,b]$, $a \ge 2$, b = 4 then $n_m^{-1}(G) = \left\lceil \frac{23a-4}{6} \right\rceil$.

Proof:

Let *G* be the 2*D* – Lattice of $T \cup C_4 C_8[a, b]$ where *a* is the number of squares in a row and *b* is the number of rows of square. $V(G) = \{v_1(G), v_2(G), ..., v_{12}(G)\}$ where $v_1(G) = \{v_{11}, v_{12}, ..., v_{1a}\}, v_2(G) = \{v_{21}, v_{22}, ..., v_{2j}\}, v_3(G) = \{v_{31}, v_{32}, ..., v_{3a}\}, v_4(G) = \{v_{41}, v_{42}, ..., v_{4a}\}, v_5(G) = \{v_{51}, v_{52}, ..., v_{5j}\}, v_6(G) = \{v_{61}, v_{62}, ..., v_{6a}\}, v_7(G) = \{v_{61}, v_{62}, ..., v_{6a}\}, v_8(G) = \{v_{81}, v_{82}, ..., v_{8j}\}, v_9(G) = \{v_{91}, v_{92}, ..., v_{9a}\}, v_{10}(G) = \{v_{101}, v_{102}, ..., v_{10a}\}, v_{11}(G) = \{v_{111}, v_{112}, ..., v_{11j}\}, v_{12}(G) = \{v_{121}, ..., v_{12a}\}, v_{12}(G) = \{v_{121}, ..., v_{12a}\},$

Let $S_M = \{v_{41}, \dots, v_{4a}, v_{71}, \dots, v_{7a}, v_{10\,1}, \dots, v_{10a}, v_{22}, v_{24}, v_{26}, \dots v_{2(j-2)}\}$ where j = 2a with minimum cardinality $|S_M| = \left\lceil \frac{23a-4}{6} \right\rceil$. $S_M' \subseteq V - S_M$ be the inverse neighborhood set with respect to S_M . $S_M' = \{v_{31}, \dots v_{3a}, v_{61}, \dots v_{6a}, v_{91}, \dots v_{9a}, v_{11\,2}, v_{11\,4}, v_{11\,6}, \dots v_{11(j-2)}\}$ where j = 2a. S_M' covers the edges $3\left(a(b-1)+a-\left(\left\lfloor \frac{a-2}{6} \right\rfloor+1\right)\right)$. (i.e) $|\langle N[S_M']\rangle| = 3\left(a(b-1)+a-\left(\left\lfloor \frac{a-2}{6} \right\rfloor+1\right)\right) > \left(\left\lfloor \frac{a-2}{6} \right\rfloor+1\right)$ and $|N[S_M']| = (b)(a(b-1))+(b-1)\left((a-\left(\left\lfloor \frac{a-2}{6} \right\rfloor+1\right)\right) > a$

 $\left\lceil \frac{16a}{2} \right\rceil = 8a = \left\lceil \frac{p}{2} \right\rceil. \text{ Therefore } S_M' \text{ is the inverse majority neighborhood set }. |S_M'| = a(b-1) + \left(a - \left(\left\lceil \frac{a-2}{6} \right\rceil + 1\right)\right) \Longrightarrow n_m^{-1}(G) = \left\lceil \frac{23a-4}{6} \right\rceil.$

Suppose $|S_M'| - 1 = \left\lceil \frac{23a - 4}{6} \right\rceil - 1$ then $|\langle N[S_M'] \rangle| = 3\left(a(b - 1) + a - \left(\left\lfloor \frac{a - 2}{6} \right\rfloor + 1\right)\right) - 3 < \left\lceil \frac{23a - 4}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil$. Therefore S_M' is not inverse majority neighborhood set. Hence $n_m^{-1}(G) = |S_M'| = \left\lceil \frac{23a - 4}{6} \right\rceil$.

Theorem 1.4

For the graph G be the 2D -Lattice of $T \cup C_4 C_8[a,b]$, $a \ge 2$, b = 5 then $n_m^{-1}(G) = \left\lceil \frac{29a-5}{6} \right\rceil$

Proof:

Let *G* be the 2*D* – Lattice of $T \cup C_4 C_8[a, b]$ where *a* is the number of squares in a row and 5 is the number of rows of square. $V(G) = \{v_1(G), v_2(G), ..., v_{15}(G)\}$ where $v_1(G) = \{v_{11}, v_{12}, ..., v_{1a}\}, v_2(G) = \{v_{21}, v_{22}, ..., v_{2j}\}, v_3(G) = \{v_{31}, v_{32}, ..., v_{3a}\}, v_4(G) = \{v_{41}, v_{42}, ..., v_{4a}\}, v_5(G) = \{v_{51}, v_{52}, ..., v_{5j}\}, v_6(G) = \{v_{61}, v_{62}, ..., v_{6a}\}, v_7(G) = \{v_{61}, v_{62}, ..., v_{6a}\}, v_8(G) = \{v_{81}, v_{82}, ..., v_{8j}\}, v_9(G) = \{v_{91}, v_{92}, ..., v_{9a}\}, v_{10}(G) = \{v_{101}, v_{102}, ..., v_{10a}\}, v_{11}(G) = \{v_{111}, v_{112}, ..., v_{11j}\}, v_{12}(G) = \{v_{121}, ..., v_{12a}\}, v_{13}(G) = \{v_{131}, ..., v_{13a}\}, v_{15}(G) = \{v_{151}, ..., v_{15a}\}$ where j = 2a. |V(G)| = 20a and |E(G)| = 29a - 5.

Let $S_M = \{v_{41}, \dots, v_{4a}, v_{71}, \dots, v_{7a}, v_{10 \ 1}, \dots, v_{10a}, v_{13 \ 1}, \dots, v_{13a}, v_{22}, v_{24}, v_{26}, \dots v_{2(j-2)}\}$ where j = 2a with minimum cardinality $|S_M| = \left\lceil \frac{29a-5}{6} \right\rceil$. $S_M' \subseteq V - S_M$ be the inverse neighborhood set with respect to S_M . $S_M' = \{v_{31}, \dots v_{3a}, v_{61}, \dots v_{6a}, v_{91}, \dots v_{9a}, v_{12 \ 1}, \dots, v_{12a}, v_{14 \ 2}, v_{144}, v_{146}, \dots v_{14(j-2)}\}$ where j = 2a. S_M' covers the edges $3\left(a(b-1) + a - \left(\left|\frac{a-1}{6}\right| + 1\right)\right) \ge \left|\frac{29a-5}{2}\right| = \left|\frac{q}{2}\right|$ and $|N[S_M']| = (b-1)\left(a(b-1)\right) + (b-2)\left(\left(a - \left(\left|\frac{a-2}{6}\right| + 1\right)\right) > \left|\frac{20a}{2}\right| = 10a = \left|\frac{p}{2}\right|$. Therefore S_M' is the inverse majority neighborhood set . $|S_M'| = a(b-1) + \left(a - \left|\frac{a-1}{6}\right| + 1\right) \Rightarrow n_m^{-1}(G) = \left|\frac{29a-5}{6}\right|$. Suppose $|S_M'| - 1 = \left|\frac{29a-5}{6}\right| - 1$ then $|\langle N[S_M'] \rangle| = 3\left(a(b-1) + a - \left(\left|\frac{a-1}{6}\right| + 1\right)\right) - 3 < \left|\frac{29a-5}{2}\right| = \left|\frac{q}{2}\right|$. Therefore S_M' is not inverse majority neighborhood set. Hence $n_m^{-1}(G) = |S_M'| = \left|\frac{29a-5}{6}\right|$. Therefore S_M' is not inverse majority neighborhood set. Hence $n_m^{-1}(G) = |S_M'| = \left|\frac{29a-5}{6}\right|$.

Theorem 1.5

For the graph G be the 2D -Lattice of $T \cup C_4 C_8[a,b]$, $a \ge 2$, $b \ge 6$ then $n_m^{-1}(G) = \left\lceil \frac{6ab - a - b}{6} \right\rceil$

Proof:

We consider the graph the sequence of C_4 , C_8 , C_4 , This 2D -Lattice of $T \cup C_4$, C_8 is denoted by $T \cup C_4 C_8[a, b]$ where a is the number of squares in a row and b is the number of rows of squares. |V(G)| = p = 4ab and |E(G)| = q = 6ab - a - b. $V(G) = X_1 \cup X_2$ where $X_1 =$ $\left\{v_{j1},\ v_{j2},\dots v_{j(2a)},v_{(j+3)1},\dots v_{j+3(2a)},v_{(j+6)1},\ \dots,v_{(j+6)(2a)},\dots v_{(3b-1)1},\dots,v_{(3b-1)2a}\right\}$ j=2 and $X_2=V(G)-X_1\ni\{v_{k1},...v_{ka}\}$. Let S_M' be the inverse neighborhood set with respect to S_M . We choose the vertex set $S_M' = V_r(G) \cup V_t(G)$ where $V_r(G) =$ k = 3 $\{v_{k1}, \dots v_{ka}, v_{(2k)1}, \dots v_{(2k)a} \dots v_{k(b-1)1}, \dots v_{k(b-1)a}\}$ where and $V_t(G) =$ $\{v_{(3b-1)2}, v_{(3b-1)4}, \dots v_{(3b-1)(j-2)}\}$ where j=2a. Therefore $S_M' =$ $\{v_{k1}, \dots v_{ka}, v_{(2k)1}, \dots v_{(2k)a}, \dots, v_{[k(b-1)]1}, \dots, v_{[k(b-1)]a}, v_{(3b-1)2}, v_{(3b-1)4}, \dots v_{(3b-1)(j-2)}\}$ where k=3, j=2a. $|V_r(G)|=a(b-1)$ and $|V_t(G)|=(a-1)$. The vertex set $V_r(G)$ covers edges 3a(b-1) and $V_t(G)$ covers edges 3(a-1). S_M' covers edges $|\langle N[S_M'] \rangle| =$ $3a(b-1) + 3\left(a - \left(\left|\frac{a+(b-6)}{6}\right| + 1\right)\right) \ge \left[\frac{6ab-a-b}{2}\right] = \left[\frac{q}{2}\right] \text{ and } |N[S_M']| = 4\left(a(b-1)\right) + 3\left(a - \left(\left|\frac{a+(b-6)}{6}\right|\right| + 1\right)\right)$ $\left(\left|\frac{a+(b-6)}{6}\right|+1\right)$. Therefore S_M' is the inverse majority neighborhood set. $|S_M'|=a(b-1)+$ $\left(a - \left(\left|\frac{a + (b - 6)}{6}\right| + 1\right)\right) \Longrightarrow n_m^{-1}(G) = \left[\frac{6ab - a - b}{6}\right].$ Suppose $|S_M'| - 1 = \left[\frac{6ab - a - b}{6}\right] - 1$ $|\langle N[S'_M] \rangle| = 3a(b-1) + 3\left(a - \left(\left|\frac{a + (b-6)}{6}\right| + 1\right)\right) - 3 < \left[\frac{29a - 5}{2}\right] = \left[\frac{q}{2}\right]$. Therefore S'_M is not inverse majority neighborhood set. Hence

$$|S_M'| = a(b-1) + \left(a - \left(\left\lfloor \frac{a + (b-6)}{6} \right\rfloor + 1\right)\right) \Longrightarrow n_m^{-1}(G) = \left\lceil \frac{6ab - a - b}{6} \right\rceil.$$

Results for Linear $T \cup C_4 C_8[a, b]$

Theorem

For the graph $T \cup C_4 C_8[a,b]$ $a \ge 1$, b = 1 then $n_m^{-1}(G) = \left\lceil \frac{5a-1}{6} \right\rceil$

Proof:

Let *G* be the linear $T \cup C_4 C_8[a,b]$ where *a* is the number of squares in a row and b is the number of rows of square. $V(G) = \{v_1(G), v_2(G), v_3(G)\}$ where $v_1(G) = \{v_{11}, v_{12}, ..., v_{1a}\}$, $v_2(G) = \{v_{21}, v_{22}, ..., v_{2j}\}$, $v_3(G) = \{v_{31}, v_{32}, ..., v_{3a}\}$ Where j = 2a. |V(G)| = p = 4a and |E(G)| = q = 5a - 1.

Case (i) $a \le 4$

Let $S_M = \{v_{21}, v_{23}, v_{25}, \dots, v_{2(j-1)}\}$ where j = 2a with minimum cardinality $|S_M| = \left\lceil \frac{5a-1}{6} \right\rceil$. $S_M' \subseteq V - S_M$ be the inverse neighborhood set with respect to S_M . $S_M' = \{v_{22}, v_{24}, v_{26}, \dots, v_{2j}\}$ Where = 2a. $|\langle N[S_M'] \rangle| = 3((a-1)) + (b+1) \ge \left\lceil \frac{5a-1}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil$ and $|N[S_M']| = (b+3)(a-1) + (b+2)$. Therefore S_M' is the inverse majority neighborhood set. $|S_M'| = (a-1) + 1 = a \Rightarrow n_m^{-1}(G) = \left\lceil \frac{5a-1}{6} \right\rceil$.

Suppose $|S_M'| - 1$ then $|\langle N[S_M'] \rangle| = 3((a-1)) < \left\lceil \frac{5a-1}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil$. Therefore S_M' is not inverse majority neighborhood set. Hence $|S_M'| = n_m^{-1}(G) = \left\lceil \frac{5a-1}{6} \right\rceil$

Case (ii) a > 4

Let $S_M = \{v_{22}, v_{24}, v_{26}, \dots, v_{2(j-2)}\}$ where j=2a with minimum cardinality $|S_M| = \left\lceil \frac{5a-1}{6} \right\rceil$. $S_M' \subseteq V - S_M$ be the inverse neighborhood set with respect to S_M . $S_M' = \{v_{23}, v_{25}, v_{27}, \dots, v_{2(j-1)}\}$ where j=2a. $|\langle N[S_M'] \rangle| = 3((a-1)) \geq \left\lceil \frac{5a-1}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil$ and $|N[S_M']| = 4((a-1)) > \left\lceil \frac{4a}{2} \right\rceil = 2a = \left\lceil \frac{p}{2} \right\rceil$. Therefore S_M' is the inverse majority neighborhood set. Hence $|S_M'| = \left\lceil \frac{a+2}{6} \right\rceil - 1 \Rightarrow n_m^{-1}(G) = \left\lceil \frac{5a-1}{6} \right\rceil$. Suppose $|S_M'| - 1$ then $|\langle N[S_M'] \rangle| = 3((a-1)) - 3 < \left\lceil \frac{5a-1}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil$. Therefore S_M' is not inverse majority neighborhood set. Hence $|S_M'| = n_m^{-1}(G) = \left\lceil \frac{5a-1}{6} \right\rceil$.

Example

References

- [1] Frank Harry, "Graph Theory", Addision-Wesley Addision Wesley reading MA.
- [2] Haynes, T W hedetniemi, S T, and Slater PJ, Fundamentals of Domination in Graphs", *Marcel Dekker. Inc.*, New York, 1998.
- [3] Sampathkumar E and Walikar H B, "The Connected Domination of a Graph", *Jour. Math.phy.sci*.

13.6, 1979.

[4] Sampathkumar E and Prabha S Neeralagi, "Neighborhood Number of a Graph", *Indian J. Pure*.

Appl.Math, 16.2, pp.126-132, 1985.

[5] Sampathkumar E and Prabha S Neeralagi, "Independent, Perfect and Connected Neighborhood

Number of a Graph", Journal of combinators Information and System of science.

[6] Joseline Manora J and Swaminathan V, "Majority Dominating Sets"- Published in *JA R J* 3.2,pp.75-82, 2006.

- [7] Joseline Manora J and Swaminathan V, "Majority Neighborhood Number of a Graph"-Published
- in Scientia Magna, Dept. of Mathematics Northwest University, Xitan, P.R China-Vol(6), 2, 20-

25, 2010.

- [8] Joseline Manora J and Paulraj Jayasimman I, "Neighborhood Sets Polynomial of a Graph", Int
 - Journal of Applied Mathematical Sciences, ISSN 0973-017 6. 1, pp.91-97,2013.
- [9] Joseline Manora J and Paulraj Jayasimman I "Independent Mjority Neighborhood Number of a
 - Graph", Int Journal of Applied Computational Science and Mathematics, 4.1, pp. 103-112, 2014.
- [10] Joseline Manora J and Paulraj Jayasimman I, "Results On Neighborhoods Sets Polynomial of a
- Graph", Int Journal of mathematical sciences with computer applications pp 421-426, 2015.
- [11] Joseline Manora J and Paulraj Jayasimman I, "Majority Neighborhood Polynomial of a Graph", Vol. 7, pp 97-102, 2015.
- [12] Paulraj Jayasimman I and Joseline Manora J, "Independent Neighborhood Polynomial of a graph",
 - Global Journal of pure and Applied Mathematics, Vol.13,pp.179-181.
- [13] Paulraj Jayasimman I and Joseline Manora J, "Independent Majority Neighborhood Polynomial
 - of a graph", Int Journal Mathematical Archive, Vol. 8, pp 109-112.
- [14] Paulraj Jayasimman I and Joseline Manora J, "Connected Majority Neighborhood Polynomial of
- a Graph", Int Journal of Computational and Applied Mathematics ,Vol. 12, pp 208-212, 2017.
- [15] Kulli.V.R and Kattimani, "The Inverse Neighborhood Number of a Graph", *South.East. Asian.J.Math. and Math. Sc.*, 6.3,pp. 23-28, 2008.
- [16] T Dhivya, I Paulraj Jayasimman, Joseline Manora J, "Majority Domination Polynomial of graph"
 - Int journal of of Research, Vol 7,pp 484-487, Aug 2018.
- [17] Paulraj Jayasimman I , Dhivya T , Joseline Manora J , "Inverse Majority neighborhood Number of
- a Graph", IOP Journal of physics conference series, Vol 1139,ISSN 1742-6596,pp 1-6, 2018.
- [18] Paulraj Jayasimman I and Dhivya T, Joseline Manora J "Inverse Majority Vertex Covering Number of Graph", *Int Journal of Engineering and Technology*, Vol 7, ISSN 2227-524X,pp 2925-
 - 2927,2018.
- [19] Paulraj Jayasimman I and Joseline Manora J, "The Maximal Majority Neighborhood Number of a
 - Graph", Int journal of of Research, Vol 7,pp 670-673, Aug 2018.
- [20] Paulraj Jayasimman I and Joseline Manora J, "Connected Majority Neighborhood Number of

Inverse Majority Neighborhood number for 2D –Lattice of $T \cup C_4 C_8[a, b]$ Nanotube

- a Graph", Int journal of of Research, Vol 7,pp 984-987, Sep. 2018.
- [21] Renuka J and Balaganesan P,2018, Felicitous Labeling of some Path Related of Graphs, Indian

journal of public health research and development, Vol.9,9,pp 389-396, ISSN 0976-0245.

[22] Renuka J and Balaganesan P,2018, Odd Harmonious and Strongly odd Harmonious Labeling of

some classes of Graphs, Indian journal of public health research and development, Vol.9,9,pp 397-

402 ,ISSN 0976-0245.

[23] Renuka J and Balaganesan P,2018, Odd Harmonious Labeling of some Classes of Cycle Related

Graphs, Indian journal of public health research and development, Vol.9,9,pp 403- 408, ISSN 0976-

0245.

[24] P Gayathri and S Sunantha, 2018, Multiplicative Connectivity Indices of TUC4C8(R) Nanotube,

International journal of Mathematics and its application, Vol. 6, pp 443-455.

[25] V R Kulli , 2019, *Multiplicative Neighborhood Indices* , Annals of Pure and Applied Mathematics .

Vol 19,2, pp 175-181.

[26] B.Basavanagoud, A.P.Barangi and S.M.Hosamani, First neighbourhood Zagreb index of some

nanostructures, Proceedings IAM. 7(2) (2018) 178-193.

- [27]. R. Todeshine and V. Consonni, *New vertex invariants and descriptors based on functions of vertex degrees*, MATCH Commun. Math. Comput. Chem., 64(2010), 359-372.
- [28] M. Eliasi, A. Iranmanesh and I. Gutman, *Multiplicative versions of first Zagreb index*, MATCH Commun. Math. Comput. Chem., 68(2012), 217-230.
- [29] V. R. Kulli, *Multiplicative hyper-Zagreb indices and coindices of graphs*, International Journal of Pure Algebra, 67(2016), 342-347.
- [30] V. R. Kulli, Branden Stone, Shaohui Wang and Bing Wei, *Multiplicative Zagreb and Multiplicative hyper-Zagreb indices of polycyclic aromatic hydrocarbons*, Benzenoidsystems, Preprint.
- [31] M. Randic, *On characterization of molecular branching*, Journal of the American Chemical Society, 97(23)(1975), 6609-6615.
- [32] V. R. Kulli, *Multiplicative connectivity indices of certain nanotubes*, Annals of Pure and Applied Mathematics, 12(2)(2016), 169-176.
- [33] V. R. Kulli, *first multiplicative K Banhatti index of certain nanotubes*, Annals of Pure and Applied Mathematics, 11(2)(2016), 79-82.

- [34] V. R. Kulli, General Multiplicative Zagreb indices of T UC4C8[m, n] and T UC4[m, n] Nanotube, International Journal of Fuzzy Mathematical Archive, (2016), 39-43.
- [35] Wei Gao, Muhammad Kamran Jamil et.al, *Degree-based Multiplicative Atom-bond Connectivity Index of Nanostructures*, IAENG International Journal of Applied Mathematics, 47(4)(2017).
- [36] Najmeh Soleimani, Mohammad Javad Nikmehr and Hamid Agha Tavallaee, *Computatioon of the different topological indices of nanostructures*, J. Natn. Sci. Foundation Sri Lanka, 43(2)(2015), 127-133.
- [37] Sakander Hayat and Muhammad Imran, *On Degree Based Topological Indices of Certain Nanotubes*, Journal of Computational and Theoretical Nanosscience, 12(2015), 1599-1605.
- [38] Tomas Vetrik, *Degree-based topological indices of hexagonal nanotubes*, J. Appl. Math. Comput., 2017(2017).
- [39] V. R. Kulli, *Multiplicative Connectivity Indices of Nanostructures*, Journal of Ultra Scientist of Physical Sciences, 29(1)(2017), 1-10. 454P.
- [40] Abbas Heydari and Bijan Taeri, *Hyper Wiener index of T UC4C8(R) nanotubes*, Journal of computational and Theoritical Nanoscience, 5(2008), 2275-2279.
- [41] Tomislav et.al, *Topological Compression Factors of 2-Dimensional T UC4C8(R) Lattices and Tori*, Iranian Journal of Mathematical Chemistry, 1(2)(2010), 73-80.
- [42] Lixin Xu and Hanyuan Deng, *The Schultz Molecular Topological Index of C4C8 Nanotubes*, MATCH Commun. Math. Comput. Chem., 59(2008), 421-428.