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Abstract

Sentiment analysis is more promising tool to select the best product based on the customer reviews. The increase in
number of websites and brands who are advertising their products leads to increase of customer reviews day by day.
Manually it is not feasible to analyze and decide the opinion against a product using those huge reviews. Sentiment
analysis automates the process of classifying the products as positive, negative and neutral based on customer
reviews. This paper focus on performing sentiment analysis on the text data that contains the customer reviews to
obtain the sentiment i.e., opinion of the user about the product from the reviews that the customer have given. This
paper also presents the classification of sentiment analysis techniques and stages in sentiment analysis. The
approach used in this paper uses both lexicon based technique and machine learning technique, especially SVM.
Performance of our proposed approach is evaluated using precision, recall and F1-score. The accuracy of different
decisions is also calculated. We used kaggle dataset for the experimenting our proposed sentiment analysis
approach.

Keywords: Sentiment Analysis, Customer Reviews, Preprocessing, Support Vector Machine, NLTK, TextBlob,
Kaggle Dataset;

Introduction

Sentiment is an attitude driven by feeling or judgment. Sentiment analysis can also be termed as opinion mining.
The customers are free to post their own opinions on various e-commerce sites but quality of those opinions is not
guaranteed. So sentiment analysis is more challenging. Sentiment analysis is the process of gathering opinions of an
individual customer or a brand’s audience in communication with a customer service representative. Sentiment
analysis helps determine conversations, language, and voice inflections to calculate emotions related to a business,
product, or brand. Sentiment analysis has its hands in numerous areas. For instance, sentiment analysis can be
performed on social media to determine sentiments of customers on a trending topic.

Besides, sentiment analysis can be used by call centers to monitor customer support performance. Furthermore, it
has its hands in politics to gather reviews about policy changes, campaign announcements, and many others. Many
of the products and services that we are using these days are not meeting the customer expectations resulting in the
customer dissatisfaction and decreased sales in the products. And many other customers want to know the working
of the product before they purchase to know whether the product worth the money they spent. These cases are
provided with a solution by the Sentiment Analysis by calculating the Sentiment of user opinions about the product.
This paper focus on sentiment analysis on Amazon cell phone reviews dataset in order to determine the opinion
(sentiment i.e. positive, negative or neutral) of users of cell phones so that business people and other customers can
get an overview regarding a particular product. In this paper we used TextBlob and NLTK for calculating sentiment
score and SVM for classification of customer reviews.
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The rest of the paper is organized as follows, related work section discusses the importance, types and classification
of sentiment analysis; proposed approach section gives the stages of sentiment analysis; experimental results and
discussion section presents the dataset used and results obtained from our implementation; finally the paper
concludes in conclusion section.

Related Work

Sentiment analysis has been an important tool for brands looking to learn more about how their customers are
thinking and feeling. It is a relatively simplistic form of analytics that helps brands find key areas of weakness
(negative sentiments) and strengths (positive sentiments). Moving forward, sentiment analysis is finding a place in
other organizations. During Brexit and the 2016 US election, these data tools were used to measure emotions and
attempt to predict the outcome of these events. This has led to non-brand organizations turning to sentiment analysis
for their own needs. Additionally, the insights gained from these tools are becoming much deeper, as a result of
emerging social media platforms and features. Sentiment analysis simply looks more popular in the future.

A. Why Sentiment Analysis?
Sentiment analysis on customer review data is an important tool to get positive outcomes with customer
interactions [2]. Sentiment analysis can be done manually or using any technique described in this paper, the
sentiment analysis works as described below:

a) Proactive business operation: Sentiment analysis provides useful insights for the analysis of events and
adaptable categories. In order to analyze customer attitudes towards a particular topic or product,
marketers can obtain information from blogs, reviews, social media postings. In addition, marketers can
recognize purchasing intent through the sales funnel, which lets them determine the new brand
sentiment-influencing promotions and also identify the segment that draws greater interest.

b)Deep Audience insight: Sentiment Analysis helps to provide helpful and better customer insights that drive
marketers to curate future content and campaign plans. It also helps marketers address market research
by tailoring their marketing tone before further moving with new product features.

c¢) Better ROI on marketing campaign: Sentiment analysis helps to assess the amount of positive and negative
conversations about a particular brand or product that helps marketers succeed in their marketing
campaign. In addition, it helps in the marketing campaign to scale the ROI by combining numerical and
non-numeric data.

d) Improved customer service: Sentiment analysis is seen as an effective tool for understanding the behavior
of a customer and monitoring their dissatisfaction, if any. It also helps a poor customer rating to be
changed to nice. This helps marketers push their business to an entirely different success level.

e)Good public relation practice: Analysis of feedback encourages exposure to understanding of the brand,
which is a public relations must. It also helps marketers analyze how relevant and informative each
message is to their customers. Analysis of feelings helps to identify how the public feels about certain
topics.

B. Types of Sentiment Analysis
i) Document Level: Typically this type of sentiment analysis is applied over the entity which helps to
recognize the negative or positive views of an individual entity by using documents [1] [6].
ii)Comparative Level: The main purpose of this type of sentiment analysis is to identify the opinions using
comparative sentence [1] [6].
iii) Aspect based: This type of sentiment analysis analyzes multiple entities. In the type of sentiment
analysis, it typically helps to evaluate the negative and positive item-based aspect [1] [6].

C. Classification of Sentiment Analysis Techniques
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Sentiment Analysis techniques can be generally classified as lexicon based techniques, machine learning
techniques and hybrid techniques. Lexicon based techniques finds the lexicon to analyze the customer reviews.
Dictionary based approach finds the words in the customer reviews and then search for the meaning where as
corpus based approach works statistically and semantically. Machine learning techniques are broadly classified
as unsupervised learning and supervised learning. In supervised learning various classifiers are presented by
various authors to classify the customer reviews like linear classifier, rule based classifier, decision tree
classifier, probabilistic classifier. Linear classifiers like SVM [7], Neural Networks [8] and probabilistic
classifiers like navie bayes [9], Bayesian network [10], maximum entropy [11] can be used for sentiment
classification.

Statistical Semantic
Dictionary Corpus Based
Based approach approach
Lexicon based
Techniques
/" Sentiment .\-_ Hyhrid 5 v
. Analysis Techniques up\p[l;r:hj::tur
— - Linear .
‘Machine Learning ﬂl Neural Network
Techniques — L )
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r—k—j Classifier
UnSupervised Supervised
[ Decision Tree
Classifier Navie Bayes
| Probabilistic ~ | Maximum
Classifier Entropy
—L Bavesian
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Figure 1 Classification of Sentiment Analysis Techniques

The Proposed Approach of Sentiment Analysis

As shown in Figure 2, the proposed method for sentiment analysis consists of following stages: Data collection,
Preprocessing, Feature Selection, Sentiment Classification. Each step of the proposed method is explained below:

1. Data Collection

The data on which we are going to perform the sentiment Analysis is the textual data that contains the reviews
given to the product, details of the reviewer and the product. We can create our own datasets with the
requirements we have or we can also use the existing datasets that are available on internet, one such resource for
datasets is Kaggle Datasets.

2. Preprocessing the Data
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The data we collect from the users in the form of reviews contains a lot of noise that reduces the accuracy of the
sentiment that we have calculated for the reviews. Noise is anything that is not useful for our process of calculating
sentiment one such example of noise is emoji’s that are given by users in the reviews. So we have to remove these
kinds of noises from the data for accurate sentiment results. This is called as pre-processing or cleaning the data.
Preprocessing involves 3 steps:

Step 1: Removal of Punctuation:

For same set of words over punctuation may change the sentiment of the sentence. So, punctuation need to be
eliminated. Punctuation that is to be removedis “! "#$ % &' () *+,-./:;<=>?2 @[/]" " {|} ~”

Step 2: Removal of other special characters like emoji’s:

While giving reviews users may also use emoji symbols with which we can’t generate a semantic score using
Sentiment Analyzer. So those symbols need to be removed. These symbols are removed by encoding text first into
ascii standard and again decoding into ascii standards. Because ascii standard contains only 128 unique characters in
which emoji’s are not available. So, during encoding these symbols were simply ignored.

Step 3: Removal of Stop words:

A stop word is a commonly used word such as “the”,” a”,” an”,” is” etc. that need to be ignored during pre-
processing of data because of their frequency of occurrence in text they consume much memory and processing
resources. So, to reduce this overhead problem stop words are need to be eliminated.

Pre-Processing Sentiment
Removal of Poschzstion Classification
Femoval of specis] characters
Removal of Stop words TexiBiob, MLTK, SWM
Y y ™ Y
L= L L= L
Data Collection Feature
Selection

Faggls Datazet:
Tam Frequency-Inverss

Document Fraguancy.
Figure 2 Stages in Sentiment Analysis
3. Feature Selection

Term Frequency-Inverse Document Frequency (TF-1DF) is most used text mining approach [3]. TF-IDF is a weight
metric which decide the importance of word in a review. Term Frequency (TF) measures the occurrence of term t in
a review r. TF is calculated as

No.of occurences of term ¢t in review r

TE(t,r) =
( j No.of terms inreview r

Inverse Document Frequency (IDF) measures the importance of a term. IDF is calculated as
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Total no.of reviews
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Figure 3 Flow diagram of the proposed approach for sentiment analysis

4. Sentiment Calculation

The useful words of the text data that we have collected are considered as tokens and these tokens enable us to
calculate sentiment of the review. In this paper we used NLTK and TestBlob to calculate the sentiment score.
Training dataset and testing dataset is generated using NLTK and TestBlob for classification of sentiment. Support
Vector Machine (SVM) [5] is also used for sentiment classification and proposed approach is evaluated based on
various parameters. Figure 3 described the flow of proposed approach for sentiment analysis.

Experimental Results and Discussion
A. Dataset

The dataset used for the experimental purpose is Kaggle Dataset. It is simplest and best-supported file type available
on Kaggle is the “Comma-Separated List”, or CSV for tabular data. CSVs uploaded to Kaggle should have a header
row consisting of human-readable field names. A CSV representation of a shopping list with a header row, for
example, looks like this:

id, type, quantity

0, bananas, 12
CSV files will also have associated column descriptions and column metadata. The column descriptions allows you
to assign descriptions to individual columns of the dataset, making it easier for users to understand what each
column means. Column metrics, meanwhile, present high-level metrics about individual columns in a graphic
format. Table 1 dataset contains the information regarding the products i.e. Cellphones. Table 2 dataset contains
information regarding the reviewer and review.

Table 1 ltems.csv Dataset
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Column Name Column Description

2zin Amaren Stenderd Identification Number (10-digited)
uzad for product-identifieation within Amaron com

brand Name of the product brand

title Product title

url Product URL

imags Productimage TURL

ratmg Product average rating value

reviewlil Product Review page URL

totalReviews Totzl number of product reviews

Price(m UUS%)  Priceof product m US §

Metadata regarding Items.csv: Total Number of columns: 9, Total Number of rows: 792

Table 2 Reviews.csv Dataset

Column Name Column Description
asm Amazen Standard Identification Number (10-digited) used
for product-adentification within Amaroen. com
nams Reviewet name
rating Beeviewer rating (scale 1to 3)
date Review date
verified Valid customer (TRUE or FALSE)
title Review title
bedy Beeview content

helpfulVotes Helpful feedbacks

Metadata regarding reviews.csv: Total Number of columns: 8, Total Number of rows: 82815
B. Implementation

From the two datasets we don’t require all attributes because at this stage we’re interested in understanding the basic
procedure do sentiment analysis using pre-defined Python NLTK (Natural Language processing Toolkit) module.

In future based on requirement we may include other attributes that have impact in predicting sentiment. At this
stage 1 we’re going to get predict sentiment at each single review. We are not predicting the sentiment of the
product based on all its related reviews and attributes.

So, for now we are choosing asin and body attributes from the review.csv dataset for our analysis. The body
attribute is selected because it specifies the content of the review and asin is selected because it is common attribute
in both datasets. But for now, it is of no use but in future we may require it to map reviews to particular product. No
attribute is selected from items.csv data because it is completely about product information but right now, we
interested in reviews so items.csv is not considered.

Now we are going to perform sentiment analysis in two different cases i.e. Sentiment analysis using cleaned dataset
and Sentiment Analysis using uncleaned dataset. For both the case calculating polarity score (sentiment score) is
same but difference is that in case of cleaned dataset, the dataset undergoes pre-processing i.e. cleaning of data
whereas in uncleaned dataset, the same dataset is passed as input to Sentiment Analyzer to calculate sentiment or
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polarity scores for each review. Removing stop words, nltk.stopwords(“english”) provides a corpus that contain
“not” as one of the stop word. To remove punctuation using Python we use punctuation in string module. Figure 4,
Figure 5, Figure 6 presents the screenshot for 3 steps of preprocessing respectively.

In [5]): runfile('C:/Users/19P1283/.spyder-py3/tring.py’', wdir="C:/Users/19P3283/.spyder-

py3')

With Punctuation:The phone "was great™ until the pixels started decaying. Now the whole
screen is purple!! Cant used the cell anymore, that's the risk you run with used phones.
Without Punctuation: the phone was great until the pixels started decaying now the whole
screen is purple cant used the cell anymore thats the risk you run with used phones

Figure 4 Removal of punctuation

In [6]: runfile( 'C:/Users/19PJ283/.spyder-py3/tring.py"’, wdir="C:/Users/19PJ283/.spyder-
py3")

With symbols:I wanted black but received blue. And I wanted it for Verizon but it isn3€™t
compatible 3¥H|3Yni€a™€1,

Without symbols: i wanted black but received blue. and i wanted it for verizeon but it isnt
compatible

Figure 5 Removal of emoji/symbol

In [10]: runfile{ 'C:/Users/19P1283/ . spyder-py3/tring.py’', wdirs'C:/Users/19P1283/ . spyder

py3")

with stopwords:I was disappointed becouse I buy a new phone and they send me second hand

phone but it works ok for now
without stopwords: disappointed becouse buy new phone send second hand phone works ok

Figure 6 Removal of stop words

For calculating sentiment score using Python we use a module called nltk. To calculate polarity score an object for
class SentimentintensityAnalyzer to be initialized which has to be imported from nltk.sentiment.vader. Then using
polarity_score() method which is available in SentimentIntensityAnalyzer class and passing text as argument to this
method scores are calculated. The output of polarity_score() method is a dictionary data type containing negative,
positive, neutral and compound polarity scores. Compound polarity score measure the overall sentiment of text.
Based on compound value text is determined positive (compound value>0), negative (compound value<0) or neutral
(compound value = 0).

For calculating sentiment score using Python we use a module called textblob. To calculate polarity score an object
for class TextBlob to be initialized which has to be imported from textblob module and target text has to be passed
as parameter to TextBlob. Then using sentiment() method which is available in TextBlob class polarity score is
calculated. The output of sentiment() method is a tuple data type containing Polarity score and subjectiviy score.
Based on compound value text is determined positive (polarity score>0), negative (polarity score <0) or neutral
(polarity score = 0).

During polarity scores calculation all the results are stored in list data type. In cleaned dataset case, cleaned reviews
are also provided in dataset under attribute cleaned review and labels are specified under the attribute decision along
with asin and review attributes. In uncleaned dataset case, labels are provided under the attribute decision along with
other attributes in the figure 7.
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Flgure 8 Uncleaned test case: uncleaned analy3|s stagel csv

In stage 2 we considered each review and its sentiment predicted and stored in the corresponding files. From the
input dataset reviews.csv we observed that for a unique product having multiple reviews. This means for a single
unique product multiple review are there. So here using asin attribute as key we are going to find total number of
reviews on that product, again among them total number of positive reviews, total number of negative reviews, total
number of neutral reviews and total number of no reviews. Again, in stage 2 we have two cases cleaned and
uncleaned. In both the case whole process is same but input datasets are different.

For cleaned case, Input dataset is cleaned_analysis_stagel.csv and Output dataset is cleaned_analysis_stage2.csv as

shown in figure 9.
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Figure 9 Output dataset: cleaned_analysis_stage2.csv
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For uncleaned case, Input dataset is uncleaned_analysis stagel.csv and Output dataset is
uncleaned_analysis_stage2.csv as shown in figure 10.
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Figure 10 Output dataset: uncleaned_analysis_stage2.csv
Table 3 describes the metadata on output datasets.
Table 3 Metadata of output datasets
Column name Column Description
S.No Specifies serial number
asin Amazon Standard Identification Number(key attribute)
brand Specifies mobile brand name
Product_title Specifies short description regarding mobile
total reviews Specifies total reviews available on that particular product
tot_positive Specifies total positive reviews on that particular product
tot_negative Specifies total negative reviews on that particular product
tot_neutral Specifies total neutral reviews on that particular product
tot_noreviews Specifies total no reviews on that particular product

During polarity scores calculation all the results are stored in list data type. In cleaned dataset case, cleaned reviews
are also provided in dataset under attribute cleaned review and labels are specified under the attribute decision along
with asin and review attributes. In uncleaned dataset case, labels are provided under the attribute decision along with
other attributes. Table 4 and Table 5 gives the sentiment analysis using NLTK and TextBlob respectively. Figure 11
and Figure 12 shows the sentiment analysis using NLTK and TextBlob respectively.
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Table 4 Sentiment Analysis for NLTK

Table 5 Sentiment Analysis for TextBlob

Figure 12 Sentiment Analysis for TextBlob

Labels UnCleaned Cleaned Labels UnCleaned Cleaned
Positive 55962 59667 Positive 60040 62177
Negative 17157 11449 Negative 10801 9904
Neutral 9676 11507 Neutral 11954 10542
Empty Review Empty 20 192 Empty Review Empty 20 192

Judgement Judgement
TOTAL 82815 82815 TOTAL 82815 82815

Sentiment Analysis for NLTK
mUncleaned o Cleaned
30667
33962
17157
11449 0576 11507
. 20 192
POSITIVE NEGATIVE NEUTRAL EMPTY REVIEW
EMFTY JUDGEMENT
Figure 11 Sentiment Analysis for NLTK
Sentiment Analysis for TextBlob
B UnCleansed mCleaned
60040 62177
10801 gop4 11934 10542
20 192
POSITIVE NEGATIVE NEUTRAL EMPTY REVIEW
EMFTY TUDGEMENT
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Support Vector Machine is used for classification of sentiment after calculating the sentiment score using NLTK and
TextBlob. Classification_report() method that is used in our program returns a dictionary dataset with elements
precision, recall, f-score and support. These are all calculated for positive, negative, neutral and empty review and
empty judgment categories. SVM has defined input and output format. Input is a vector space and output is zero or
one (positive/negative). Performance of our proposed approach is evaluated using precision, recall and F1-score.
Precision calculates how many selected items are relevant, it is the ratio of number of items correctly labeled as
positive to total number of positively classified items. Recall calculates how many relevant items are selected, it is
the ratio of total number of positively labeled items to total items which are truly positive. F1-score is harmonic
mean of precision and recall. Figure 13 and Figure 14 represents the performance evaluation of SVM for NLTK and
TextBlob respectively.

Performance Evaluation of SVM for NLTK
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Figure 13 Performance evaluation of SVM for NLTK
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Performance Evaluation of SVM for TextBlob
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Figure 14 Performance evaluation of SVM for TextBlob

Accuracy is a performance measure for classification. It calculates how many items are predicted corrected. The
accuracy analysis for NLTK and Texblob on various decisions are shown in the Figure 15.

Accuracy
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Figure 15 Accuracy analysis for NLTK and Texblob
Conclusion

Many of the products and services that we are using these days are not meeting the customer expectations resulting
in the customer dissatisfaction and decreased sales in the products. Sentiment analysis helps to select the best
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product we buy. Many researchers analyzed the product reviews in various ways that we described in this paper. Our
proposed approach has given 86% precision with SVM for NLTK and 90% precision with SVM for TextBlob. The
accuracy of different decisions is also calculated and gives 95% accuracy for positive and negative decision. As a
future work we propose to analyze customer reviews further based on a specific brand and implement other
techniques of sentiment analysis for calculating sentiment score and classification techniques.
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