
FPGA Implementation of Snoopy Bus based Cache Coherence Protocols for Dual Processor System

3206

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume12, Issue 5, July 2021: 3206-3216

Research Article

FPGA Implementation of Snoopy Bus based Cache Coherence Protocols for Dual

Processor System

Sambu Navya1, Dr. Y. Padma Sai2, K. Swetha Reddy3

1

Abstract: When designing of Shared Memory Multiprocessor systems Cache Coherence becomes

the great challenge to deal because incoherence may occur when the processors are working on

the same data without any coordination. This coherence can be brought by using cache coherence

protocols which are finite state machines which manages the cache and memory. This Paper aims

at introducing cache coherence in details and providing a performance analysis of some of the

cache coherence protocols. Thus this work is majorly focusing on implementation of MSI, MESI

and MOESI cache coherence protocols using Xilinx ISE on FPGA and the way coherence

protocols are designed are analysed perfectly.

Keywords - Cache Coherence; MSI; MESI; MOESI; Verilog HDL; Artix-7 FPGA.

1. Introduction

Shared memory multiprocessor systems are emerging so rapidly to perform the computations at a

faster rates. Processor speed is also increasing in order to meet the performance requirements of

computations but the memory speed is not increasing at the same pace. In order to meet the

demands of computations each processor in the multiprocessor system have its own private L1

Cache to reduce the memory access time of the processor.

In multiprocessor system cache coherence problem may occur when there is no proper

coordination between the caches of the each Processor. data inconsistency may occur when there

is no proper synchronization between caches. This leads to cache coherence problem and this is

tackled by cache coherence protocols. To maintain the data consistency a set of rules are

implemented in the system called as cache coherence protocols. In this paper three snoopy based

cache coherence protocols are implemented are MSI, MESI, MOESI.

1VNR Vignana Jyothi Institute of Engineering and Technology Email: sambunavya@gmail.com
2VNR Vignana Jyothi Institute of Engineering and Technology
3VNR Vignana Jyothi Institute of Engineering and Technology

Sambu Navya1, Dr. Y. Padma Sai2, K. Swetha Reddy3

3207

Figure 1: Shared Memory Multiprocessor Architecture.

Figure 1 Shows the shared memory multiprocessor architecture where each processor consists its

own independent cache and one main memory and I/O system.

2. Literature Survey

Zainab, Michael [2] describes only two snoopy based cache coherence Protocols. i.e., MSI, MESI.

Kaushik Roy, Pavan Kumar S.R[3] have done comparative studies of cache coherence protocols

but they have not implemented cache coherence protocols. Neethu, Geeta[4] have studied

simulation based performance study of cache coherence protocols in Gem-5 Simulator. Sravanthi,

Rajashekara[5] have implemented MESI Protocol. Daman, Sulochana[6] implemented cache

coherence protocols in Multiprocessor systems. Liu, Hao [7] proposed a new type of L2 cache in

order to combat the high power usage of the conventional L2 cache. Suamher[8] described the

snoopy and directory based cache coherence protocols. Amit D.Joshi[9]acknowledged snooping

Cache Coherence Protocols are suitable for multiprocessor architectures. Mays K. Faeq, Safa [10]

have implemented only MSI Protocol in the multiprocessor system. Danko, Sinisa[11] have done

Time domain performance evaluation of adaptive hybrid cache Coherence Protocol. Li, Sizhao

[12] work explored the cache access patterns of a GPU by running various benchmarks on both

NVIDIA and AMD architectures, and concluded GPU handles cache coherence much better than

CPUs. Ibrahim A.Amory, Ahmed H.Ahmed [13] have implemented only MESI Protocol. Bijo,

Shiji [18] Discussed parallel execution on multicore architectures with multilevel caches. This

Literature survey motivated me to design of snoopy bus based cache coherence protocol for

multiprocessor architectures.

3. Proposed Methodology

In multiprocessor systems, each processor has its own local cache. These caches can have different

values for the same address in main memory depending on when the data was read from memory.

For example, if two processors load the same value from memory and both modify it before storing

it back to the memory, one of the values will be overwritten and the other value is lost. This

problem is known as cache incoherence. There are multiple different protocols that attempt to keep

coherency between the caches so when one processor modifies a value, the change is propagated

through the rest of the system without wasting time for accessing the main memory.

FPGA Implementation of Snoopy Bus based Cache Coherence Protocols for Dual Processor System

3208

Figure 2: Proposed System for Cache Coherence in Multiprocessor System.

In figure 2 the chip select(cs), write enable(we),clk, rst, output enable (oe), data, address are the

input signals applied to the processor. When the write enable is high the data and address is written

to cache memory 1 and cache memory2 respectively. Cache memory1 is specifically designed for

the purpose of storing the data. Sometimes, processor needs to perform operation immediately. so

in that particular situations, if the processor looks for the data and task address in main memory,

it will takes more time for performing the operation. To solve this problem, the data output from

the processor will be applied as input to cache memory. It will stores the immediate version of

data inputs, so the processor can perform the task very immediately. Thus, in order to perform the

parallel operation, all the address inputs given by the user must be stored. For this purpose, the

input addresses are going to store into the Cache memory2 for faster retrieval of data.

Generally, the results synchronization issues across the processor, to perform the Task

based on the Cache-1 data output to the cache 2 address output. Thus, to maintain the

synchronization between the two cache memories, the memory bus controller mechanism will be

useful. The direct cache memory 1 output and memory bus controller output will be applied as the

input to the memory mapping unit. Generally, the memory mapping unit is consisting of the real

time processor, which consisting of multi-level memory to perform the various tasks. Thus, here

the memory mapping unit is used to perform the selection of cache memory 1 output. If any

interrupt generated due to the cache coherence protocol, then according to the interrupts, it will

selects the data and results the outputs as the final data out.

A. Cache Coherence Protocols:

Cache coherence protocols are deployed in multiprocessor systems for maintaining coherency

across all the caches for consistent view of shared data among the processors. Snoopy and directory

based mechanisms are mainly used for maintaining cache coherency each having its own pros and

cons.

Snooping protocols are faster since each cache status is monitored through bus but it is not

scalable and it requires more bandwidth if the number of processors increase. Directory based

protocols are scalable since it maintains separate directory for maintaining each cache status in the

system but the disadvantage is longer latencies.

Snooping protocols were the first widely deployed class of coherence protocols and offer

several attractive features such as low-latency transactions and a simple design. In such protocols,

all the coherence controllers snoop the requests and process them in the same order. Thus, they all

observe the same scenario and they can update correctly their finite state machines. Three widely

used snooping protocols are MSI, MESI, MOESI.

Sambu Navya1, Dr. Y. Padma Sai2, K. Swetha Reddy3

3209

 a) MSI Protocol: MSI Protocol is the classic and basic cache coherence protocol for write back

caches.MSI stands for Modified, Shared, Invalid. Each cache block is maintained one of the three

states for maintaining coherency in the system.

Modified: The block is valid, exclusive, owned, may be dirty, and may be written or read. The

cache has the only valid copy of the block and it is potentially stale at the memory. The cache is

responsible for requests for the block.

Shared: The block is valid but not exclusive, not dirty, not owned and is read-only. The other

caches may hold valid, read-only copies of the block.

Invalid: The block is invalid. Either the cache does not hold the block or it holds a stale copy that

it may not read or write. Figure 3 represents the MSI Protocol State diagram.

Processor side requests for the cache includes:

PrRd: Processor request to read a cache block.

PrWr: Processor request to write a cache block.

Bus requests for the cache are:

BusRd: When a read miss occurs in a processor’s cache, it sends a BusRd request on the bus and

expects to receive the cache block in return.

BusRdX: When a write miss occurs in a processor’s cache, it sends a BusRdX request on the bus

which returns the cache block and invalidates the block in the caches of other processors.

BusUpgr: When there's a write hit in a processor's cache, it sends a BusUpgr request on the bus to

invalidate the block in the caches of other processors.

Figure 3: MSI State Transition Diagram

b) MESI Protocol: MESI protocol is wite invalidated cache coherence protocol mainly adopted

for write back caches. MESI protocol is also known as Illinois protocol named after the Illinois

university where it is developed.

In MESI Protocol an Extra State is added to MSI Protocol called as Exclusive state which

reduces the Transitions from “invalid” to “modified” state from MSI Protocol.

 Exclusive: A block is exclusive when it is the only privately cached copy of that block in the

system. The importance of the exclusive state is that local Cache can modify its data alone without

need for Snooping from other Caches.

FPGA Implementation of Snoopy Bus based Cache Coherence Protocols for Dual Processor System

3210

Figure 4: MESI State Transition Diagram

The advantagaes of MESI Protocol over MSI protocol is the extra state added called as exclusive

state which reduces the bus transistions when the read miss occurs in the cache.MESI protocol is

faster when compared to MSI particularly when working on the serial application by the processor.

No cost change will be there since MSI and MESI states are encoded with 2 bits.

c) MOESI Protocol: In MOESI an extra state called as Owned State to MESI Protocol is added to

improve the MESI which reduces the memory access. Figure 5 represents the MOESI State

Transition Diagram of MOESI.

Owned state: In the multiprocessor system, A block is owned by a cache controller if it is

responsible for responding to coherence requests for that block. This block cannot be evicted

without giving the ownership to another coherence controller.

Figure 5: MOESI State Transition Diagram.

The Owned state in MOESI protocol overcomes the writing of dirty cache line back to main

memory. The owned state allows directly to access the modified data to the processor. When the

processor wants to write the data to its cache line with owned state it has to send bus request to

Sambu Navya1, Dr. Y. Padma Sai2, K. Swetha Reddy3

3211

invalidate the cache line which is having same block or asks to update their cache contents with

new data.

4. Results

In this Paper MSI, MESI, MOESI Cache Coherence Protocols of Shared Memory dual processor

system is designed in Xilinx and implemented on FPGA.

i) Design of Protocols:

State machines of snoopy bus based cache coherence protocols are designed in Verilog HDL and

simulated in Xilinx. The various input signals are Processor read(PrRd), Processor Write(PrWr),

Bus Read(BusRd), Bus upgrade(BusUpgr) determines the Cache states and also Output signals

Memory Read(mem_rd), Memory write(mem_wr), Memory chip select(mem_cs) determines the

possible operations that can be performed on the cache states.

Figure 6: Simulation Waveform of State Transition of MSI Protocol

Figure6 Represents the Simulation Waveform of MSI Protocol. It shows States of cache block

States are changed according to input signals.

Figure 7: Simulation Waveform of State Transition of MESI Protocol

Figure 7 Represents The Simulation Waveform of MESI Protocol.

FPGA Implementation of Snoopy Bus based Cache Coherence Protocols for Dual Processor System

3212

Figure 8: Simulation Waveform of State Transition of MOESI Protocol

Figure 8 Represents the Simulation Waveform of MOESI Protocol.

ii) Implementation of Protocols:

MSI, MESI, MOESI Snoopy bus based Cache Coherence Protocols are Implemented in the

Proposed System as shown in Figure1. All the Individual modules of Proposed System are

designed separately in Xilinx.

Testbenches are designed to verify the functionality of Each Protocol in the Proposed System of

Cache Coherence Multiprocessor System. Each Module is instantiated in the top level module by

calling each Module in the top level module according to their functionality. Here in the Proposed

System clk, address, data, cs(chip select) ,we(write enable) ,oe(output enable) are the input signals,

remaining all are output signals. Data out processor should be monitored with respect to the address

input. Initially, when we=1 then all the data input will be stored into RAM. Then memory based

error checking operation performs using rollbacks. Finally, ram_oe will be activated. Then Data

out of processor signal will generates. Data out of cache should be monitored with respect to the

address out of cache. After error correction,cam1_oe becomes 1, then data out will be generated.

The valid_f flag becomes active high, whenever error occurred, it will be auto corrected by using

the proposed system.

Figure 9,10,11 are the simulation waveforms of Implementation of MSI, MESI, MOESI Protocols

in the Proposed system.

Sambu Navya1, Dr. Y. Padma Sai2, K. Swetha Reddy3

3213

Figure 9: Implementation of MSI Protocol

Figure 10: Implementation of MESI Protocol

Figure 11: Implementation of MOESI Protocol

FPGA Implementation of Snoopy Bus based Cache Coherence Protocols for Dual Processor System

3214

Figure 12: Implementation of Cache Coherence Protocol in ARTIX-7 FPGA

Figure 12 Represents the FPGA Implementation of Cache Coherence Protocol. Above figure

Represents The one of the state in MESI Protocol. Likewise all The states in Cache Coherence

Protocol are implemented in FPGA Board.

TABLE 1: COMPARISON OF CACHE COHERENCE PROTOCOLS IN TERMS OF ITS

PERFORMANCE

TABLE 2: COMPARISION OF MSI, MESI, MOESI PROTOCOLS

Sambu Navya1, Dr. Y. Padma Sai2, K. Swetha Reddy3

3215

4. Conclusion

In this paper MSI, MESI, MOESI Cache coherence protocols of Dual Processor system is

designed, verified in Xilinx and implemented in ARTIX7 FPGA. Their Area, delay performance

analysis is carried out. These results shows us that MOESI Protocol actually bring significant

performance improvements in the Shared Memory Multiprocessor System.

References

[1]. Vijay Nagarajan, Daniel J.Sorin, Mark D. Hill, David A.Wood. " A primer on Memory

Consistency and Cache Coherence. "Morgan and Claypool Publishers.

[2]. Zainab Al-Waisi and Michael Opoku Agyeman. "An Overview of On-Chip Cache

Coherence Protocols." 2017 Intelligent System Conference.

[3]. Kaushik Roy, Pavan Kumar S.R, Meenatchi S. "Comparative Study On Cache Coherence

Protocols." 2016 IOSR Journal of Computer Engineering.

[4]. Neethu Bal Mallya, Geeta Patil and Biju Raveendran. " Simulation Based Performance

Study of Cache Coherence Protocols." 2015 IEEE International Symposium on

Nanoelectronics and Information Systems.

[5]. Attada Sravanthi, Ch.Rajasekhara Rao, K. Krishnam Raju, L. Rambabu. "Implementation

of MESI Protocol in Verilog." 2019 International Research Journal of Engineering and

Technology.

[6]. Daman Preet Kaur, V. Sulochana. "Design and Implementation of Cache Coherence

Protocol for High-Speed Multiprocessor System." 2018 2nd IEEE International

Conference on Power Electronics, Intelligent Control and Energy Systems.

[7]. Liu, Hao, Quentin L. Meunier, and Alain Greiner. "Decoupling Translation Lookaside

Buffer Coherence from Cache Coherence." 2017 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI). IEEE, 2017.

[8]. Samaher AI- Hothali, Safeeullah Soomro, KhuraamTanvir, Ruchi Tuli. “ Snoopy and

Directory Based Cache Coherence Protocols: A Critical Analysis.” Journal of Information

& Communication Technology. Vol.4, No.1, (Spring 2010) 01-10.

[9]. Amit D.Joshi, Satyanarayana Vollala, B. Shameeda Begum, N. Ramasubramanian. “

Performance Analysis of Cache Coherence Protocols for Multi-Core Architectures: A

FPGA Implementation of Snoopy Bus based Cache Coherence Protocols for Dual Processor System

3216

System Attribute Perspective.” AICTC 16: Proceedings of the International Conference on

Advances in Information Communication Technology and Computing 2016.

[10]. Mays K. Faeq, Safaa S.omran. “ MSI Protocol for Multicore Processors Based on

FPGA.” International Journal of Engineering Science Invention (IJESI) 2020.

[11]. Danko Ivosevic, Sinisa Srbljic, Vlado sruk. “Time Domain Performance Evaluation

of Adaptive Hybrid Cache Coherence Protocols.” IEEE 10th Mediterranean

Electroteechnical Conference.

[12]. Li, Sizhao, and Donghui Guo. "Cache coherence scheme for HCS-based CMP and

its system reliability analysis." IEEE Access 5 (2017): 7205-7215.

[13]. Amory, Ibrahim A., Ahmed H. Ahmed, and Zahraa Hasan. "MESI protocol for

multicore processors based on FPGA." Periodicals of Engineering and Natural Sciences

(PEN) 9.1 (2021): 80-89.

[14]. Chakraborty, Bidesh, Mamata Dalui, and Biplab K. Sikdar. "Design of a reliable

cache system for heterogeneous CMPs." Journal of Circuits, Systems and Computers 27.14

(2018): 1850219.

[15]. Kaushik, M. Hassan and H. Patel “Designing Predictable Cache Coherence

Protocols for Multi-Core Real-Time Systems.” IEEE Transactions on Computers, 2020.

[16]. R. Rodrigues, I. Koren, and S. Kundu, “A mechanism to verify cache coherence

transactions in multicore systems,” in 2012 IEEE International Symposium on Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oct 2012.

[17]. Kabadi, Dr, and G. Mohan. "A Comprehensive Study on Design Consideration of

Multi Core Processors." (2020).

[18]. Bijo, Shiji, et al. "A formal model of parallel execution on multicore architectures

with multilevel caches." International Conference on Formal Aspects of Component

Software. Springer, Cham, 2017.

[19]. Agarwal, Sukarn, and Hemangees K. Kapoor. "LiNoVo: Longevity Enhancement

of Non-Volatile Last Level Caches in Chip Multiprocessors." 2020 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2020.

[20]. sLyu, Yangdi, et al. "Directed test generation for validation of cache coherence

protocols." IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 38.1 (2018): 163-176.

