J.R. Alieva
Turkish Online Journal of Qualitative Inquiry (TOJQI)
Volume 12, Issue6, July, 7111- 7116

Research Article

Description Of 2 Local Bilateral Symmetric Multiplications Of Functional
Component Matrix In Banach Algebra

J.R. Alieva (Phd, ADU, Zhralieva@Mail.Ru)

Abstract. This article covers studying the description of 2 local bilateral symmetric multiplications in
Banach algebra of functional component matrix. The definitions related to this are mentioned, and the
lemma and theorem are proven.

Keywords: two-dimensional matrix, identity matrix, Banach algebra, 2 local bilateral symmetric
multiplication, linear operator, associative algebra.

Definition 1. Let us see two-dimensional matrix algebra as M, (R). Let us say that if to reflect
A:M,(R) = M, (R) we take x ,y € M, (R), and there is such A € M, (R), in this case if

A(x) = AXA, A(y) = AY A equality is fulfilled, A is called two local bilateral multiplication.
Theorem 1. Let us mark the continued functions complex of two dimensional matrix algebra as

M, (R) ® Cla,b].

Let there be A: M, (R)RXCla,b] — M, (R) & Cla,b] as such two local bilateral
a;,(t) a,(t)
@y (1) ay,(t)
x,y € M,(R) ® Cla, bl Alx) = axa A(y) = ava,
fl:t] =0 .gl:t] = 0.k(t) = 0, h(t) > 0inarandom interval of xe[a, b] .

Then A is bilateral multiplication which means such aeM (R) ® Cla,b] is defined and for
arandom xe M, (R) ® Cla, b], A(x) = axa is appropriate.

Proving. For a random xeM, (R) & Cla, b]

A(x) = BxB, Aley,(t)) = Bey ,(t)B

Alx) = CxC, Ale,, (1)) = Ce,,(1)C

A(x) = DxD, Ale,,(t)) = De,,(t)D

A(x) = FxF , A(e,,(t)) = Fe,,(0)F

multiplications, for the matrix az( ) to satisfy the condition

According to the lemma, there is such A
BEEII:E)B = Ae&.l (t]A, CE’H (t]c == Aelz (t]x‘q,
DEEII:EJD =A€21(EJA, FEEE(E)F =A€22(E)A

the equality is appropriate, which means, we can get
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b31(t) = a3, (b) €31 (B)cay(t) = az 1 (Day, (1)
by 1 ()by5 (1) = az 1 (Da;,(t) €31(B)cay (1) = ag 1 (D) ay (1)
by 1 (£)by4 (1) = a1 ()az, () c31(t) = a3, (o)
by 1 ()b, (£) = @y (£)a;, (1) €21 () cz5(0) = @y (Daz, (1)
dy,(0)dy, (1) = az,(t)ay,(0) fo1 (O fi2 () = az,(D)ay,(0)
di,(t) = ai,(0) fiz (O fz2 () = a1, as,(0)
d3 1 (£)dy; (1) = az;(Day (1) f21(0) o2 (£) = ay; (D) a25(0)
dy;(8)d 5 (1) = az;2(t)ay, (t) f5(t) = a3,(t)
From this,

'513.1&] = ba.l&j = CE.l(ﬂ = dz.l(ﬂ- ﬂlz&j = by, (t) = fiz (t) = di; (1),
@y () = by (£) = ¢, () = £, (1), A5(t) = €22(1) = dyp (1) = f22(1)

In order to make it comfortable, we enter the following markings,

@y 1(0) = a3 (%31 + ag1(Da;; (0% + a1 (Day; (Dx;;

+ay,(D)az; (H)xz,,

Qpp =31 (D)0 (0)X31+ a1, (0% + ag 1 (Da5;(Dx1; + a3, (D az; (0)x;2,
@1 (1) = @p1 (D)ag 1 (%31 + a31 (D)5 (D)% + a3, (D)X, + a5; (D) a5 (0)X25,
@2 (1) = 51 (D)A12(D)X31 + Q15 () A2, (D) X1 + @31 (D)5:(D) %51 + a35(D) %52,
B2 (D) = b31(Dx31+ by 1 ()b (D)X21 + by (Db (D)X 15 + by () ba; (D)X,
Ya1(8) = €23 (D)ca1 (O)%a1 + €31(0)€22 ()% + €31 ()X15 + €55 (D)2 (D)5,
812(t) = d3 1 (O)d 12 ()31 + AT, (D)X, + dy 3 (D)dy; (D) X35 + d 5 (0)dy, (D)X,
€22(8) = 1 (O fi2 (D331 + fia (D fo2 (D) %21 + £ (D f2 (D) %21 + 55 (D) %55

Then,

_ _ Ba1 () @y, (D) . o sy, (t) ay,(t)
A(x) = BXB = (aﬂm e I:t]) . A() = CXC = (}{21 5 o &))'
a4, (1) a;, (ﬂ) .

ay, (1) £,5,(1)

;4 (t) 65, (t)

AGx) = DXD = (au(ﬂ g

), &(x]=FXF=(

It means,
A(x) = BXB = CXC = DXD = FXF = (”3-1&] %1z m).
“21&) Ezz(ﬂ
The theorem is proven.
Definition 2. If there is such aeM,(C) symmetric matrix, the equalities as
@(x) = axa , (y) = aya are fulfilled for a random x, yeM, (C), @ is

called 2 local symmetric bilateral multiplication.
Theorem 2. The random 2 local linear reflection of a limited dimensional vector space is a linear
operator on this vector space.

Theorem 3. M, (C) can be a random 2 local symmetric bilateral multiplication linear operator
in associative algebra.
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Proving. As we know, if @(x) = bxb ,xeM,(C) and beM, (), then a ¢ is linear

operator and is defined by any d.
Let us assume, there is a random 2 local symmetric bilateral reflection defined on 11 =2 and

@ — M, (C). Then, for the random xeM,, (C) such aeM, ((C) is defined,

@(x) = axa:
X11
0(x) = @ Xz21 | (311312)(35113‘512)(‘111‘112) B
X12 o102/ \Xa1 X322/ \31 072
X232

(anxu +a42X51011X45 + alzxzz) ('—'111‘112)
Ap1X11 T Ao2X51021 X35 + Aa2X95/ \A3105;
For the comfort
011 = A11X110491 F Q12X21047 T A11X12091 + A13X92054,
0C19= A11X11Qq2 + A12X21012 + A11X32092 + A12X32099,
0y =0a91X11Qq1 T Aa2X91031 T A31X12057 T A22X52054 ,
oy =091X11092 + A32X91Q15 + A31X12055 + A22X55055
if to enter marking as this way, we get

'f1211 Ayo044 Q310737 Q35054 Xq1

(p(x]:(inilz): (31044 51222311 az; Q32073 ?1
217722 Ay11047 aj- 11037 Q472072 12

41045 32045 Az1075 as, *22

If matrix @ is symmetric, this formulation can be formed in the following way:

ﬂ§1 a0y, 4904, ‘1212 X11
11097 Q1057 as, A7047 X21
ay1045 ai; @310, Ay12035 X12
ai, Ay20y; Q10,3 *az

Here we can see that here the first multiplied matrix is symmetric. Similar (p(}f] = ayaisalso

defined through the above mentioned matrix. According to the above mentioned theorem 1, ¢ is a linear
operator.
Let us say that there is a random 2 local symmetric bilateral reflection which is defined on m =3

and @ — M, (). Then, for the random xeM,, (C), such aeM, () is defined that (x) = axa :
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/x 11 \
X241

X31

X2

X1 Q0093 /X1 X902 Xy3 ;095043
o(x)=¢ X, | = Q31032033 || X21X22 X3 (71072053

X35 (g 037033 X31X3p X33 (31035033

13

X
\\)
33

Let us enter markings in the following way:

3 (’ 3 3 3
Y11 = § Zﬂlkka Oy | Y12 = E E O Xpem |Qmz |
m:1\ k=1 m=1 \ \k=1
3 (’ 3 3 3
Y1z = E (E alkka)aml ' Y21 = E E QopXpm |Qma |
mzl\ k=1 m=1 \ “k=1
3 3 3 3
Y2z = E ( aEkka)amE ' Y22 = § (E QopXpm |Qmz |
m=1 \ “k=1 m=1 \ “k=1
3 3 3 3
Y1 = § ( ﬂzkka)ﬂm1 ’ Yz2 = ( A3 Xpem |Ama | »
m=1 \ “k=1 m=1 \ “k=1
3 3
Yzz = E ( ﬂakka)ﬂma .
m=1 \ \k=1
Then,
Yi1 Yiz Y1z
@x)=1{ Y21 Va2 Y23
¥a31 Yiz  Vas

The proving is completed.
3. Let us assume that on the complex figures M, (C')C there is matrix algebra with measure 1.

If on taking a random matrix x , v € M, (C) for reflecting A: M, (C) — M, (C), there is such
A€ M, (C), in this case the equalities Alx) = AxA, ﬂl:}f] = Ay A are fulfilled, then A is called

2 local bilateral multiplication.
According to this entered notion, the following lemma is appropriate. Let us assume that A is

M., (R) 2 local bilateral multiplication which is positive in two-dimensional matrix algebra.
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Lemma 1 In 1 measured matrix algebra, there is such A € M,, (R ) that for the identity matrix

e; €M, (R),i,j=12,..,n on A two local bilateral multiplication the equality
A(e;;) = Ae; ;A s fulfilled, which means:
A(e;;) = Ae AL ) =12,...,n

Proving.
Ale;) = AGij, kDe,; AGj, kD) = (afy,; - aﬁﬁk,);,ﬁzl,
() = (KD, ij,k1=1.2,..,n
Here
A(ij, kD) = A(kL, i)
Let us calculate for each matrix the two local bilateral multiplication for identity matrixes. It is
appropriate if the following equalitiesare I,j = 1,2, ..., 1:

A(ij, 1l)e!-jA(ij, 11) = A(ij, lZ)Ei-jffl(ij, 12) =

= A(ij, lS]ei-jAI:ij, 13)=--= A(ij,nn)e;; A(ij,nn)

Here, itis clear that A(i], 1j)e; ;A (1], [j) is skipped.

Theorem 4. Let us say F is a random field, and A is two local bilateral multiplication which is
A= {a!-j- L 0 } and all the components of which are positive in two-dimensional matrix algebras

M., (F), which means it is two local bilateral multiplication defined by matrixes. Then, there is such
A € M,,(F) that in this case for a random X € M,,(F) the equality A(X) = AXA is fulfilled,
which means A is bilateral multiplication.
Proving. Let us take a random element xeM,, (R). Let us assume that the following equalities
are fulfilled in such {B (i) };‘J_: , Matrix system
A(x) = B(ij)xB(ij)
Ale; ;) = B(i,j)ei-ljB(E,j), iL,j=1n
According to the lemma 1, there is such A4 that the equalities
Alx) = B(ij]ei-jBl:ij] = Aei-jA, L,j=1n
are appropriate. Let us equalize all the components in the multiplications of the equality:
ﬂ'.!.- j-.E _ a'!'. 7 _ ..
bir-b/7 =a a?, a,f=1n ij=1n
We get the following equality system from this equality:
bl =a® a=1n
iB _ _j T
b = a? B=1n
This system equalizes the components like i — column, j — row.
Let us use this equality system for the following matrix equalities.
A(x) = B(ij)xB(ij)i,j = 1,n . Then, according to the above mentioned equality
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AG) = B(ij)xB(ij) — be}’f 6
k=1 a,ff=1

Sy ak k| ,lP

B(ij) = Z Zb‘f x| b
=1 \k=1 @ f=1

Ifa=j,andf =1
Z be}k x bf}zz Zaf’fx” a" = (AxA) ;.
=1 \k=1 =1 \k=1

The components j — row and I — column of each B(ij]xBl:ij] multiplication matrix are
equal to (AxA) ;; here f,j = 1n

A(x) = B(11)xB(11) = B(12)xB(12) = --- = B(nn)xB(nn)

The equalities produce the equality A(x) = AxA .

Consequently, there is suich A € M_ (C) that if to take a random x € M_ (C), the equality

A(X) = AXA is appropriate.
The theorem is proven.
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