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Abstract 

For a graph G = (V, E), a defensive alliance of G is a set of vertices S ⊆ V(G) satisfying the 

condition that for each v ∈ S, at least half of the vertices in the closed neighborhood of v are in S. 
Let ϕ:V(G) → {1, 2, 3,… , |V|} be a bijection. A subset S ⊆ V is called difference secure set of G 

with respect to ϕ if for all u, v ∈ S, there is a  w ∈ S such that |ϕ(u) − ϕ(v)| = ϕ(w) if and only 

if  uv ∈ E. A defensive alliance S of G which is also a difference secure set is called defensive 

alliance difference secure set. In this paper, we compute the maximum cardinality of various 

types of minimal defensive alliance difference secure sets for paths. 

Keywords: defensive alliance, difference labeling, difference secure sets, defensive alliance 

difference secure sets. 

Introduction 

For a simple, connected graph G = (V, E), S is a non-empty subset of V(G), 〈S〉 denotes the subgraph 

of G induced by S and compliment of S is S  = V − S. Let p1 be the property of the graph satisfied by 

at least one subset S among the varieties of V(G) subset. Then such subsets satisfying p1-property will 

have 4 different types of sets and defined as shown in Table 1.  

 

Table 1: Varieties of sets with p1-property. 

 

Sets Condition for the set 𝐒 Condition for the set 𝐒̅ 

p1-set S should satisfy the p1-property No condition 

p1
∗-set S should satisfy the p1-property. S should satisfy the p1-property. 

P1-set S should satisfy the p1-property. S should not satisfy the p1-property. 

P1
∗-set S should not satisfy the p1-property. S should not satisfy the p1-property. 
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Let p2 be one more property satisfied by any subset of varieties of subsets of V(G). If any subset 

has to satisfy both p1 and p2 property then we get 42 varieties of p1p2-sets of G. With the properties 

p1, p2 we get various types of p1p2-sets of G.  In general, with the properties p1, p2, p3,..., pk we get 

4k different types of p1p2p3…pk-sets of G. These properties are studied for subsets of 2n of the V(G) 
of the order n. By removing null set and whole set from the subsets of V(G), we make the analysis mo

re relevant. Hence, for 2n − 2 subsets of V(G), we review the properties. A  p1p2-set is said to be a mi

nimal p1p2-set of G if none of its proper subsets are p1p2-set of G. The maximum cardinality of a min

imal p1p2-set of G is called upper p1p2 number and is denoted by up1p2(G). 

For a vertex v in a graph G = (V, E), the open neighbourhood of v is the set N(v) = {u: uv ∈ E} a
nd the closed neighbourhood of v is N[v] = N(v) ∪ {v}. A non-empty set of vertices S ⊆ V is called d

efensive alliance if for every v ∈ S, |N[v] ∩ S| ≥ |N(v) ∩ S|. In this case, we say that every vertex in S

 is defended from possible attack by the vertices in S. The initial studies on defensive alliance is done 

by S. M. Hedetniemi, S.T. Hedetniemi and P. Kristiansen (2004).  Also, a very useful survey is done b

y H. Fernau and J. A. Rodriguez-Velazquez (2014) on alliance and related parameters in graphs. 

We recall Theorem 1.1 and Theorem 1.2 studied by P. Kristiansen, S. M. Hedetniemi and S. T. He

detniemi (2002) for immediate reference. 

 

Theorem 1.1: The subgraph induced by a minimal defensive alliance set of a connected graph G is co

nnected.  

Theorem 1.2: For any graph G, a(G) = 1 if and only if there exists a vertex v ∈ V(G) such that  deg(
v) ≤ 1. 

Remark 1.3: For a path Pn, any vertex  vi ∈ V with deg(vi) = 2, the set S = {vi} is not a defensive all

iance. 

 A graph G is called difference graph if there exists a mapping labeling ϕ between the vertex set 

of G into distinct positive integers S so that the edges in G exists if and only if the difference of its end 

vertices is the label of a vertex in G. Further research work on difference graph is found in [4-6]. A 

subset S ⊆ V(G) is called a difference secure set  of G with respect to ϕ:V ⟶ {1, 2, 3, … , n} if for all 

u, v ∈  S, there is a w ∈  S such that |ϕ(u) −  ϕ(v)| =  ϕ(w) if and only if uv ∈   E. Among all such 

ϕ the maximum cardinality of a difference secure set is called difference secure number of G and it is 

denoted by DSN(G). 

B. Sooryanarayana and Suma A.S (2018) studied neighborhood resolving property of a graph G. 

Similarly, for any graph G, we obtain 16 varieties of subsets S ⊂ V(G) which have both defensive 

alliance property and a difference secure property as shown in Table 2. 

 

Table 2: Varieties of sets with a-property and d-property 

   

ad-set ad∗-set aD-set aD∗-set. 

a∗d-set a∗d∗-set a∗D-set a∗D∗-set 

Ad-set Ad∗-set AD-set AD∗-set 

A∗d-set A∗d-set A∗D-set A∗D∗-set 

 

The number of defensible members who can defend immediately in alliances is determined by 

the codes assigned to them. If the members of the alliances are neighbors and those members will 

always be able to protect themselves without delay in time, the disparity in the codes assigned to them 

also exists. If not, there are no codes, and members do not protect them.  

Remark 1.4: For any graph G = (V, E) , the singleton set S =  {v }, v ∈  V  is always difference 

secure set. 

Remark 1.5: For a connected graph G with order n ≥  2, the subset S ⊂  V(G) with |S| = 2 is always 

a difference secure set. 

Remark 1.6: For any a > 0, the difference secure set S for any triangle free graph G (n ≥ 3), cannot 



On Classes Of Defensive Alliance Difference Secure Sets Of A Graph 

7633 

contain a subset with labels {a, 2a, 3a}.  

Remark 1.7: For any path Pn with difference secure set S, if  d ∈ ϕ(S) then the set {x, x + d, x +
2d}  ⊈  ϕ(S), for any x > d. 

Theorem 1.8 and Theorem 1.9 is referred from Sunita Priya D’Silva. (2020) research work. 

Theorem 1.8: For a path Pn of order n,  DSN(Pn) = ⌈
n

2
⌉ + 1. 

Theorem 1.9: For n ≥ 11 , the graph Pn  cannot have both sets S  and S as difference secure 

simultaneously. 

Observation 1.10: For a graph Pn, 2 ≤  n ≤  10,  there exists a set S for which both S and S  are 

difference secure. 

Lemma 1.11: For any path Pn of order n, D∗-set does not exist. 

 

Results and discussion 

In this sections, the maximum cardinality of ad-set for a path Pn are discussed. 

Lemma 2.1: For a path Pn, any subset S of V(Pn), if 〈S〉 and 〈S〉 of Pn are connected then S cannot be a 

A-set. 

Theorem 2.2: For any path Pn,  uad(Pn) =  ua∗d(Pn) = {
1,  for n = 2, 3
2, for n ≥ 4.

 

Proof. For any path Pn the singleton set S with pendant vertex is a minimal ad-set. For n = 2, 3, 

maximum cardinality of minimal set is one. Hence, uad(Pn) =  ua∗d(Pn) = 1. When n ≥ 4, consider 

S = {vi, vi+1}, 2 ≤ i ≤ n − 2. Then the sets S and S both are defensive alliance. Also, the subsets of S, 
{vi} or {vi+1} are not defensive alliance (since they are not end vertices). Hence, S is a minimal 

defensive set. Any a-set or a∗-set w cardinality three of  Pn will contain the set of the form S. Hence, 

maximum cardinality of minimal  a-set and a∗ -set is 2. We define labeling function ϕ:V(G) →
{1, 2, 3, … , n}  as follows: ϕ(vi) = a  and ϕ(vi+1) = 2a  for a ϵ Z+ . Since vi  and vi+1  are adjacent 

vertices in S  and |ϕ(vi+1) − ϕ(vi)| = a = ϕ(vi)  implies vi  ∈  S satisfying the condition of d -set.  

Therefore, the set S will be a ad-set and a∗d-set. Hence, uad(Pn) =  ua∗d(Pn) = 2. 

Theorem 2.3: For any path Pn,  uAd(Pn) =  {
does not exist for n = 2
2                         for n = 3
3                         for n ≥ 4.

 

Proof. If v is a pendant vertex of the path Pn, then both the subsets S = {v} and S = V − {v} will be a 

defensive alliance. It is obvious that any subset S of V(P2) does not satisfy condition of A-set. Further, 

if v is not a pendant vertex then the set S itself is not a defensive alliance. Hence,  S to be an A-set, we 

must have |S| ≥ 2. Also, by Remark 1.5, S is a d-set. Therefore, uAd(P3) = 2. 

 For the set S = {vi, vj}, 1 ≤ j ≤ n, with vi as end vertex of Pn and if vj~vi, then both S and S  

will be defensive alliance. If not, then  S itself fails to be a defensive alliance. Hence, we take |S| > 2.  
Let S = {vi, vj, vk}, 1 ≤ j < k ≤ n , with vi  as end vertex. If S  contains all the three non-adjacent 

vertices, then  S is not a defensive alliance. Hence, we choose a set S with vi ≁ vj and vj~vk.  For this 

S we define a labeling function ϕ: V → {1, 2, 3, … , n} as follows. ϕ(vj) = 2ϕ(vk) with ϕ(vk) = a ∈

 {1, 2, 3, … ⌊
n

2
⌋} and ϕ(vi) ≇ 0 (mod a). Hence, S is a Ad-set. Also, there exist no minimal set S with 

|S| > 3 which is a Ad-set. Therefore, uAd(Pn) = 3. 

Theorem 2.4: For any path Pn, uAd∗(Pn) = {
2, for n = 3
3, for 4 ≤ n ≤ 8

does not exist, for n = 2 and n ≥ 9.
 

Proof. Let S ⊂ V(Pn). Any singleton set S is not a A-set. Clearly, P2 has no set which is a A-set. For P3, 

S = {v1, v3}  is a A -set (since S  is a singleton set). For n ≥ 4 , the set S = {v1, v3, v4}  or S =
{vn−3, vn−2, vn} is a A-set (as discussed in Theorem 2.3). Now if this set S has to be a d∗-set then there 

should exit some labeling function ϕ  such that both S  and S  are difference secure. We define a 

labeling function  ϕ:V(Pn) → {1, 2, 3, … , n} as follows: 
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For n = 3,  ϕ(S) = {1, 3}  and ϕ (S ) = {2}. Here, S  is also a d∗ -set. Hence, uAd∗(P3) = 2 . 

Consider the set S = {v1, v3, v4} with label ϕ(v3) = 2ϕ(v4) and the pendant vertex v1 can be chosen 

such that ϕ(v1) ≠ 2ϕ(v3) and ϕ(v1) ≠ 2ϕ(v4). Then S  is a difference secure. Similarly, the set 
{vn−3, vn−2, vn} is also a difference secure. For the above set S and for each 4 ≤  n ≤ 8, label the 

following subsets as ϕ(S ) = {1}, ϕ(S ) = {1, 5}, ϕ(S ) = {5, 1, 2}, ϕ(S ) = {5, 3, 7, 4} and ϕ(S) =

{5, 6, 3, 7, 4}. We observe that the above sets S are difference secure. Hence, S is a d∗-set. Also, we see 

that there is no other minimal Ad∗-set S, with |S| > 3. Therefore, uAd∗(Pn) = 3.  

Consider the set S = {v2, v3, v4, v5}  with ϕ(S) = {2, 1, 9, 8}   for n = 9 . Then we get S  =

{v1, v6, v7, v8, v9} with ϕ(S ) = {5, 4, 7, 3, 6}. Similarly, for n = 10, consider S = {v1, v2, v3, v4, v5} 

with ϕ(S) = {5, 10, 9, 1, 2}  and S  = {v6, v7, v8, v9, v10}  with ϕ(S ) = {6, 3, 7, 4, 8} . This set S  is a 

unique d∗-set but not a A-set (Since both S and S  are defensive alliance). Also, from Theorem 1.9, d∗-
set does not exist for n ≥  11. Hence, for n ≥  9, uAd∗(Pn) does not exist. 

 Theorem 2.5: For any path Pn,  uA∗d(Pn) = {
does not exist,  for n = 2, 3.

2, for n ≥ 4.
 

Proof. Let S be a subset of V(Pn). We know that singleton set S = {v}, where v is a pendant vertex, is 

always a defensive alliance. Also, if v is not a pendant vertex then  S  becomes defensive alliance. 

Hence, S is not an A∗-set. Therefore, we must have  |S| ≥ 2. Let S = {vi−1, vi+1} for 2 ≤ i ≤ n − 1 

contains one pair of non-adjacent vertices. Then obviously, S will also contain at least one pair of non-

adjacent vertices. Hence from Remark 1.3, S is an A∗ -set. Let ϕ:V → {1, 2, 3, … , n}  be a labeling 

function. Suppose we label ϕ(vi−1) = 1 and ϕ(vi+1) = 3 then S will be difference secure set (Since 

| ϕ(vi−1) − ϕ(vi+1)| = 2 ∉ S). Hence, S is both defensive alliance and difference secure set. Also, 

there is no minimal A∗-set with |S| > 2. Therefore, uA∗d(Pn) = 2. 

Theorem 2.6: For any path Pn,  uA∗D(Pn) = {
does not exist,   for n = 2, 3
2,                            for n ≥ 4.

 

Proof. The set S = {vi, vi+2}, 1 ≤  i ≤  n − 2, is a minimal A∗-set (Since S and S  are not a defensive 

alliance). For n = 2, 3, we cannot have such A∗-set. Therefore, uA∗D(P2) and uA∗D(P3) does not exist. 

Let us consider a labeling function ϕ:V → {1, 2, 3, … , n}. We have to show that there exist atleast 

one difference secure set S, for which S is not a difference secure set. From Remark 1.5, the set S =

{v2, v4} is difference secure. For n ≥  4, S  is not a difference secure. Since, when n = 4, 5, we label 

S ̅ as ϕ(S) = {2, 4}, ϕ(S) = {2, 4, 5} respectively, which is clearly not a difference secure. When n =

6, 7, there exist no labeling for S ̅ which is difference secure and for n ≥  8, S = {v2, v4}, we get 

|S | >  ⌈
n

2
⌉ + 1 which implies from Theorem 1.8, S ̅is not a difference secure set. Hence, uA∗D(Pn) =

2. 

Theorem 2.7. For any path Pn,  uA∗d∗(Pn) = {
2,                                                  for n = 4, 5.
3,                                               for n = 6,7,8.
does not exist,      for n = 2,3 and n ≥ 9.

 

Proof.  Let ϕ ∶  V → {1, 2, 3, . . . , n}  be a labeling function and S  ⊂   V (Pn). If the sets  S and S will 

contain atleast a vertex other than pendant vertex having no neighbor vertices in S  and S  respectively, 

then S  will be a A∗-set.  From Remark 1.3, in P2 and P3 there exists no such subset S.  Therefore, 

uA∗d∗(P2) and uA∗d∗(P3) does not exist. 

Define the labeling ϕ for the set S  (note that S is the set of darkened vertices in the below figures) 

which is a A∗ -set.  For n =  4, 5,  the labeling ϕ  is shown in Figure 1.  Hence, uA∗d∗(Pn) =
uA∗d∗(Pn) = 2. 

 
 

Figure 1: Labeling of P4 and P5 
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From Theorem 1.8, for n >  6, if |S|  =  2 then, S  is not a difference secure set.  When n  =   6,  

for  the set  {vi, vi+1 }, 1  ≤   i  ≤   n −  2, S  is not a difference secure set. Hence, we take  |S|   >
  2.  For  6  ≤   n  ≤   8,  the  labeling  ϕ is shown in Figure 2. Therefore, uA∗d∗(P6) = uA∗d∗(P7) =
uA∗d∗(P8)  = 3.  

 
Figure 2: Labeling of P6,  P7 and P8 

 

When n =  9, 10, there exist unique set S which is d∗-set but fails to be A∗-set.  The labeling of 

the only set S  which is d∗-set is shown in Figure 3.  

 
Figure 3: Labeling of P9 and P10 

 

 Also, by Theorem 1.9, for n ≥  11, d∗-set does not exist.  Hence, n ≥  9, uA∗d∗(Pn) does not exist. 

Theorem 2.8. For any path Pn,  uad∗(Pn) = ua∗d∗(Pn) =

{
 
 

 
 
1,                                for n = 2,3.
2,                                for n = 4,7.
3,                             for n = 5,6,8.
4,                                     for n = 9.
5,                                  for n = 10.
does not exist,       for  n ≥ 11.

 

Proof.  For P2 and  P3, the singleton set S = {v} (where v is a pendent vertex) is a minimal a-set and 

a∗-set with maximal cardinality. From Remark 1.4, S is also a d∗-set. Hence, uad∗(Pn) = ua∗d∗(Pn) =
1. For any path Pn, n ≥ 4, the singleton set S = {v} is minimal set not having maximum cardinality. 

Clearly the set S = {vi, vi+1`}, 2 ≤ i ≤ n − 2  is a minimal set (since subsets {vi } ⊂ S or {vi+1} ⊂
S  are not defensive alliance). But uad∗(Pn) and ua∗d∗(Pn) will vary according to the difference secure 

property of Pn. Consider the labeling function ϕ: V(Pn) → {1, 2, 3, … , n} for each Pn, n ≥ 4 as follows:  

(i) For  P4, S = {v2, v3}  and   S = {v1, v4}   with ϕ(v2) = 1, ϕ(v3) = 2, ϕ(v1) = 3  and ϕ(v4) =
4. Therefore, uad∗(P4) = ua∗d∗(P4) = 2. 

(ii) For P5, S = {v2, v3}, we can have ϕ(S) = {1, 2}  or ϕ(S) = {2, 4}. But for both the possibilities, 

S = {v1, v4, v5} will never be difference secure for any ϕ.  Hence, |S| > 2. Therefore, we take =

{v2, v3, v4} with  ϕ(S) = {1, 2, 4} and  ϕ(S) = {3, 5} . 

(iii) For P6, S = {v2, v3, v4}   with  ϕ(S) = {1, 2, 4}   and ϕ(S) = {5, 3, 6} . For P8, S = {v3, v4, v5}  

with  ϕ(S) = {5, 7, 2}  and   ϕ(S) = {3, 6, 4, 8}. Hence uad∗(Pn) = ua∗d∗(Pn) = 3 for n = 5, 6, 8. 

(iv) But for P7 , consider  S = {v2, v3}, with ϕ(v2) = 1, ϕ(v3) = 2  and S = {v1, v4, v5, v6, v7} with 

ϕ(v1) = 5, ϕ(v4) = 4, ϕ(v5) = 7, ϕ(v6) = 3 and ϕ(v7) = 6. Hence, uad∗(P7) = ua∗d∗(P7) = 2. 

(v) For P9 , consider S = {v2, v3, v4, v5}  with ϕ(S) = {2, 1, 9, 8}  and  S = {v1, v6, v7, v8, v9}   with 

ϕ(S̅) = {5, 4, 7, 3, 6}. Therefore, uad∗(P9) = ua∗d∗(P9) = 4. 

(vi) For P10 , consider S = {v1, v2, v3, v4, v5} with ϕ(S) = {5, 10, 9, 1, 2}  and S = {v6, v7, v8, v9, v10}  

with ϕ(S) = {6, 3, 7, 4, 8}. Hence, uad∗(P10) = ua∗d∗(P10) = 5. 

(vii) For n ≥ 11, from Theorem 1.9, d∗-set does not exist. 

 

Theorem 2.9. For any path Pn,  
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uaD(Pn) = ua∗D(Pn) = {
does not exist, for n ≤ 4.
1,                                 for n = 7.
2,                for n = 5, 6, n ≥ 8.

 

Proof. The singleton set  S = {v1} or S = {vn} is defensive alliance for a path  Pn  with minimal set.  

From Remark 1.4, a singleton set S  is a difference secure set.  It is obvious that,  P2   does not   have  

D-set.   The set  S1 = {vi, vi+1}  for  2 ≤ i ≤ n − 2 is a minimal defensive alliance, since no proper 

subset of it is a defensive alliance.  Clearly  S1 is also defensive alliance. Hence, S1 is a-set and a∗-set 

with maximum cardinality. Let ϕ ∶  V →  {1, 2, 3, . . . , n} be a labeling function.  From Remark 1.5, the 

set S1  is difference secure with ϕ(vi) = 2ϕ(vi+1). When n = 3, 4,  from Remark 1.4, the set S1  is 

also difference secure. Hence, uaD(Pn) = ua∗D(Pn)  does not exist. 

For  n = 5,  we  are left with labels for  S1   as  ϕ(S1̅) =   {3, 4, 5}  or  ϕ(S1̅) = {1, 3, 5}. We 

observe that  S1̅ = {v1,  v4,  v5}  is  not a difference secure set.  Similarly, when  n =  6, we get  

ϕ(S1̅) = {3, 4, 5, 6} or  ϕ(S1̅) = {1, 3, 5, 6}  or  ϕ(S1̅) = {1, 2, 4, 5}. Clearly, S1̅ = {v1,  v4,  v5,  v6}  

is  not a difference secure set.   For  n ≥ 8,  we  get  |S1̅| ≥ ⌈
n

2
⌉ + 1. From Theorem  1.8,  S1 is not a 

difference secure set.   Hence, for  n  =   5, 6  and  n  ≥   8  we get uaD(Pn) = ua∗D(Pn) = 2.   But 

for  n =  7,  there  exist a set  S1  with  ϕ(S1) = {1, 2}   and ϕ(S1) = {5, 4, 7, 3, 6}.   Then  S1  is 

difference secure set.   Therefore, the set  S1 is not a D-set.  For any singleton set S, |S|  =  6 >

  ⌈
n

2
⌉ + 1. Hence, S is not a difference secure set.  Therefore, uaD(P7) = ua∗D(P7) = 1. 

Theorem 2.10. For any path Pn,  uAD(Pn) = {
does not exist,          for 2 ≤  n ≤ 5
3,                                          for n = 6, 7
4,                                              for n ≥ 8

 

Proof. Let ϕ ∶  V (Pn)  →  {1, 2, 3, . . . , n} be the labeling function.  Obviously, for n =  2, the set S  is 

not a A-set.  For n =  3, the set S = {v1,  v3}  is a A-set. But by Remark 1.4 we get |S| = 1 making S  

as a difference secure set.  Therefore, S  is not a D-set.  When n =  4, 5, the set S =  {v1,  v3, v4}  is a 

minimal A-set with maximum cardinality.  Then, |S| = 1, which is a difference secure set.  Hence,  S 

is not a D-set.  Therefore, uAD(Pn) does not exist for  2 ≤   n ≤   5.  
For n ≥   6,  if we take S = {vi,  vi+1,  vi+3,  vi+4}, 2 ≤   i ≤   n −  5 which is also a minimal 

A-set with  maximum  cardinality  ( as  no  proper  subset  of  S  is  A-set ). This set S  contains two 

pair of adjacent vertices. But for n =  6, 7, it is not possible to label these four vertices v2,  v3, v5, v6 

by any labeling function ϕ. Hence, |S| ≤ 3.  Therefore, for n =  6, 7, take S = {v1,  v3,  v4}  with 

ϕ(S) =  {6, 1, 2}  and ϕ(S) = {5, 1, 2}  respectively. This set  S  will  be both defensive alliance and 

difference secure.  Hence, uAD(Pn) = 3. When n ≥  8, we consider the set S =  {vi,  vi+1,  vi+3,  vi+4}. 

We label ϕ(vi) = 2ϕ(vi+1) and ϕ(vi+2) = 2ϕ(vi+3). Then from Remark  1.7,  S  is  not   difference 

secure set.  Hence, uAD(Pn) = 4. 
The following Theorem is obvious from the Lemma 1.11. 

Theorem 2.11. For every integer n ≥  3, uaD∗  (Pn)  = ua∗D∗  (Pn)   =  uAD∗  (Pn)  =  uA∗D∗  (Pn) does 

not exist. 
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