
Tools for analysis of various static software complexities for matlab code

9084

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 6, July, 2021: 9084 - 9096

Research Article

Tools for analysis of various static software complexities for mat lab code

Neha Bharani1*, Dr. Abhay Kothari 2

Abstract

Software code quality, operation, and maintenance are all supported by software metrics. Program

metrics such as size, control flow, and data flow metrics all assess different aspects of software

complexity. Continual calculation, review, and control are required for these software

complexities. Recently, a lot of attention has been dedicated to this difficult issue, because of the

commercial value of software projects. In the literature, there are some software metrics and

estimation models to measure the complexity of mat lab projects. However, In order to acquire

correct findings about software complexity, we must integrate advanced software metrics to the

process. This paper reviews the theory of various software complexity metrics and establishes GUI

based mat lab tool that calculates a set of complexity metrics such as line of code (LOC), NPATH

(NC), McCabb's metrics (MCC), Halstead's Software Science Complexity (HSSC) and Relative

System Software Complexity (RSYSC) for mat lab programs to include a wide range of

complexity. By identifying new and redefining current measures, we evaluate many software

metrics such as software quality, project size/effort, and many more areas. Further, these metrics

can be used as inputs in neural networks for more accurate the estimation of software complexity

metrics.

Keywords: LOC, NC, MCC, HSSC, RSYSC, Mat lab

1 Introduction

As Software complexity is based on well-known software metrics, it is likely to decrease the time

spent and costs incurred in software testing. In the case of software quality, improving the quality

of the source code is considered a quantitative way of assessing quality. With regard to calculating

values, analyses of source code or the code that the program is written in may be utilized.

The metrics for software complexity have been established to varying degrees. One of the most

common complexity metrics developed by McCabe [2] is the cyclomatic complexity metric that

indicate the testability and understandability of a program. The software science measures

pioneered by Halstead [3] can be used to determine the complexity of software products. The

software science measurements include an enhancement of measuring the size of an program

by counting lines of code. The number of operators and operands in the program is measured

using Halstead's metrics (code). During the calculation of program length and other measures,

these operators and operands are considered.

A number of additional techniques were studied, such as Nesting Level [4], Data flow based

metrics [5], and the variety of LOC [6], NPATH [7], Function Points [8], Chung's live definition

[9] etc

To further describe the design and code implementation metrics in regard to software quality, Kan

[10] stated, By understanding the concepts of code Lines of Code (LOC), the software

science metrics known as Halstead's LOCs, and the software complexity metric called cyclomatic

Neha Bharani1*, Dr. Abhay Kothari 2

9085

complexity, he was able to identify three key metrics for code implementation.

In addition to the metrics related to input/output and structure, there are also several complexity

metrics associated with the system's operation (sometimes referred to as fan-in and fan-out).

Henry-Kafura [11], for instance, defined complexity as a fan-in and fan-out function to determine

the flow of information among various modules. Structural (or inter module) complexity and local

(or intra module) with respect to a module) complexity are both significant in architectural design

difficulty, according to the study of Card and Agresti [12]. In order to detect the complexity

qualities, one may use a specific function for the amount of I/O variables and fan-out of the

modules, all of which make up the design.

Additionally, a few researchers, such as [13] and [14], describe some hybrid versions of this

metric. Unlike Card D Glass, which defined structural, data, and total complexity metrics, which

can be Computed on a module and system level, Card Glass, on the other hand, defined

structural, data, and total complexity metrics, which can be computed on a module and system

level.

In order to minimize the number of bugs introduced into the product in the early stages of

development, it is preferable to apply techniques that can identify bugs as soon as possible rather

than employ costly product recalls [15]. A large amount of research has been conducted to create

automated analysis methods and tools that are used to perform quality assessment while the code

is still in development. The metrics defined for the source code and models are not publicly

available because these tools are commercial. Therefore, reproduction of the complexity

evaluation is difficult. These tools demonstrate the source code complexity for software projects

for the programming languages c, c++, and Java. A complexity analysis tool is not yet available

for use with mat lab project with lots of static measures. So, there is a need for well-defined and

easy to use complexity metrics for mat lab programs.

In this paper we describe and implement a GUI based mat lab tool called complexity Measure that

identifies some of the well known static software measures such as LOC, NPATH, MCC, and

HSSC, as well as RSYSC structure metrics for capturing interactions between modules. We have

found these metrics to be particularly useful in systems that are layered with subsystems.

Further, these metrics can be used as inputs in neural networks for more accurate the estimation of

software complexity metrics.

We can use a neural network of three layers with a single hidden layer and train this

network by using distinct training algorithms to determine the accuracy of software

complexity.

Here are the following sections that follow. Section II describes the materials and methods needed

to put our tool into practice. Section III illustrates the simulation of the proposed mat lab tool. In

Section IV, the analysis and evaluation of the system is described. To sum up, we draw the

conclusion in section V.

2 Material & Methods

2.1 Line of Code

The simplest measure of software complexity advised by Hatton (1977) is Lines of Code

(LOC). It is an indication of how sophisticated the programming is. This metric is very simple to

use and measure the number of source instruction required to solve a problem. While counting a

number of instructions (source), blank and commenting lines are ignored, but each line is counted

Tools for analysis of various static software complexities for matlab code

9086

individually. Today's software systems are becoming increasingly sophisticated, and as a result,

effective testing approaches are now required. Size qualities are commonly used to describe

physical magnitude, bulk etc. Halstead's software science [3] and lines of code are good examples

of size metrics. According to M. Halstead, the measurements suggested were referred to as

software science.

2.2 Cyclomatic complexity

Cyclomatic complexity, a measure of software complexity, determines the number of linearly

independent pathways in a code segment. It is used to calculate the program complexity by using

the Control Flow Graph. A graph represents nodes, which are used to represent the

smallest part of a program's commands, and edges connect the nodes to indicate that the second

command might be immediately following the first.

Cyclomatic complexity, for example, will be 1 if no control flow statement is included in

the source code. In general, Cyclomatic complexity is 2 if there is just one path through source

code.

In summary, thus, cyclomatic complexity C is defined as.

C(G) E N 2P

Where,

E = the number of edges in the CFG N = the number of nodes in the CFG P = the

number of connected components

Let a section of code as well as Control Flow Graph of the corresponding code as show in figure

1.

(a) (b)

Fig. 1. Shows (a) the samples program written in mat lab in and its corresponding control

flow graph in (b)

Neha Bharani1*, Dr. Abhay Kothari 2

9087

The complexity of the above code is calculated by determining the CFG. Ten nodes are shown on

the graph, as well as 9 edges, meaning the graph has a total of 9-10+2 = 1 Cyclomatic complexity.

With McCabb's Complexity, there is a problem as it fails to make fine distinctions between

conditional statements (control flow structures). Another consideration that was overlooked is the

nested level of control flow structures.

2.3 NPATH complexity

Control structure of a program is used to calculate control flow complexity metrics.

The control flow measure, NPATH, developed by Nejmeh [9], counts the number of acyclic

execution paths.

NPATH complexity (NP) is determined as shown in table 1.

Table 1. NPATH complexity measures

The shortcomings of McCabe's measure, which fails to distinguish between different types of

control flow and nesting levels control structures, are addressed by NPATH, a gauge of software

complexity.

2.4 Halstead Complexity

Halstead complexity is based on a novel method of calculating program size that includes

counting lines of code. Halstead's measurements are calculated in two phases. The first stage is to

count the number of operators and operands in the program; the second step is to count each

occurrence of the number of operators and operands (code). The aforementioned operators

and operands are considered for determining program length, vocabulary, volume, prospective

volume, predicted program length, difficulty, and effort.

The following are the fundamental definitions for these tokens:

n1 number of unique operator’s n2 number of unique operands

N1 Total occurrences of operators N 2 Total occurrences of operands

The identification of operators and operands depends on the programming language. Halstead

provides a number of software qualities based on these concepts of operators and operands. Table

2 shows the measures.

Table 2. The measures of Halstead

Tools for analysis of various static software complexities for matlab code

9088

Size of Vocabulary n n1 n2

Program Length N N1 N2

Program Volume V N log2 (n)

Potential Volume V * (2 n2) log2 (2 n2)

Program Difficulties D V / V *

Program Effort E (n1 N2 N log2 (n)) / (2n2

)

Programming

Times(Seconds)

T E / 18

One of the significant flaws of this complexity is that it does not account for control flow

complexity, which is difficult to compute quickly.

2.5 Information Flow Complexity

We applied the Henry-Kafura's metrics to calculate the information flow complexity.

 hkCMX size *(fan in * fan out)2

Where hkCMX the information flow complexity of a subsystem, size is the number of contained

blocks including subsystem blocks, fan in and fan out represent the number of different

incoming and different outgoing links of a subsystem, respectively.

2.6 System complexity

According to Card and Agresti, (whose term is) system complexity is defined as a measure of the

complexity inside procedures as well as the complexity between them. The complexity of a system

design is defined by how many procedures are called, how many parameters are passed, and how

much data is used.

System complexity was originally meant to be used during design time. Even before the

implementation is done, you can use it to evaluate the difficulty of building a designed system. To

calculate system complexity, we can use the source code as well.

External structural complexity (SC) and internal data complexity (DC) are two distinct

characteristics of system complexity.

2.6.1 Structural complexity

Our definitions start with the following:
2

1
()

n

outi
f i

SC
n

==

Where outf is a structural fan-out and it is equivalent to number of other procedures called by the

procedure. ()outf i is fan-out of sub-function i and n is a number of function in the system.

As you can see, a procedure that calls a large number of other procedures has a relatively high

structural complexity. This interaction with other procedures is why SC is thought of as the

external complexity.

Neha Bharani1*, Dr. Abhay Kothari 2

9089

2.6.2 DC Data complexity

Data complexity (the local or internal complexity) for a procedure is defined by the following

equation:

()

(() 1).out

V i
DC

f i n
=

+

Where ()V i defines number of input/output variables for a procedure i.

The more data the procedure reads and writes, the higher data complexity it has. On the other hand,

the more other procedures it calls (()outS f), the lower the data complexity, as parts of the complex

data processing is likely to have been delegated to the other procedures.

Now that we can calculate SC and DC for one procedure, let's calculate the complexity of the

entire system.

Total system complexity
(,)SYSC Sum SC DC=

Relative system complexity
(,)RSYSC avg SC DC=

The relative system complexity is the more interesting measure. It measures the average

complexity of procedures. It is a normalized measure for the entire system and it does not depend

on the system size. It thus allows for design complexity evaluation among different systems.

2.6.3 Minimizing the relative system complexity RSYSC

It is to be noted that minimizing DC may result in smaller procedures but more calls between them,

leading into an increase in SC.

Originally, Card & Agresti investigated 8 old systems (the newest one was from 1981) and found

out the following values:

Measure Value range

SC/proc 11.8–24.6

DC/proc 4.9–12.1

RSYSC 22.6–32.8

Good RSYSC ≤ 25.3, poor RSYSC ≥ 26.5

2.7 Neural Networks

Neural Networks (NNs) are an effective technique for estimating processes. The NN model

used in this study is made up of three layers of neurons: input, hidden, and output. The input

layer of this approach is made up of the number of matrices generated by system. The

association weights are adjusted in this of network to lessen the error between the actual and

calculable values of the system variables. System quality (SYSC), also known as style quality,

is a composite live of quality inside and between procedures. It assesses the effectiveness of

a system's style in terms of method calls, parameter passing, and data usage. Originally,

system quality was a design-time metric.

Neural networks are very good at modeling digital circuits. The Neural Network

representation can be utilized in a variety of situations where digital circuit behaviors must be

portrayed as a computer software solution to a specific problem.

Tools for analysis of various static software complexities for matlab code

9090

2.7.1 Digital Circuit Consideration

Arithmetic functions, including as addition, subtraction, multiplication, and division, are

performed using a variety of integrated circuits. Here, we'll look at the Half Adder's digital

circuit as well as its Neural Network counterpart. The Half Adder is a fundamental arithmetic

circuit. To understand how it works, consider the addition of two one-bit words, which results

in two bits of data, the sum bit and the carry bit. [16] We're looking at the generalized scenario

where adding two bits of data always produces a sum and a carry.

When we look at the Half Adder block diagram, we can see that the inputs A and B produce

two outputs, the Sum and Carry. The truth table reflects the conditionality of the sum and

carry, as shown in table 3. Figure 2 shows a block diagram. This block diagram can also be

turned to a circuit diagram to help you understand it more clearly and technically.

Table 3. True Table of Half adder

A B Sum Carr

y

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Z0

Z2

b

Z1

a Z3

Y0

W1=1

W2=1

W
3=-1

W
4=

-1

W
5=1

W6=1

W
7
=
1

W8=1

Sum

Carry

Fig. 2. Neural Network implementation of Half adder

3 Simulation

We developed a complexity analysis tool that comprise of LOC, NC, MCC, HSSC and

RSYSC that automatically measure the complexity metrics defined in Section 2. It is a

sophisticated tool that measures modularity metrics of mat lab functions/scripts as well as

function’s dependency on other programs/scripts [11]. The complexity analysis tool reads

mat lab file with the standard structural format and generates the metrics with the list of

subsystems and the respective complexity metrics. Our tool also measures the system or

project complexity by passing the main program into the tool.

Neha Bharani1*, Dr. Abhay Kothari 2

9091

For implementation of complexity analysis tool, we have implemented the following program

written in mat lab language.

Npath.m: It identifies the Npath software complexity of the input mat lab file. For simplicity

we have omitted the instructions path calculations.

Cyclometic Complexity.m: It determines the mcCabb’s software complexity of input mat lab

program/scripts

halstead.m: it determines the has stead’s software complexity of input mat lab

program/scripts. SystemComplexity.m: This modules determines the inter dependency with

other functions and gives the RSYSC complexity. It uses the fdep mat lab function in order

to calculate system complexity.

Token.m: Token modules are the class definition of the program tokens.

settings.m : This modules check the required setting for tokenizer.

Tokenize.m:Tokenize module divides the whole program into smallest units called tokens with

its type like keyword, identifier, constant, etc.

The system operation begins with the default position of the MAT LAB. System starts by

running the main program i.e. complexity Measure.m , by typing the file name at command

window of MAT LAB or by simply click on run command in MAT LAB show in Figure 3.

Fig. 3. Shows default position of the mat lab tool

Figure 4 shows the default position of the proposed Complexity Measure tool. The

complexity of each mat lab program or script is determined in the mat lab module

complexity panel. It includes the measure of LOC, cylometic complexity Npath complexity

and halstead complexity. In this module when we click on the specific button it will give the

respective complexity of input mat lab function/scripts. We have another panel in the system

complexity panel, called system complexity consisting of check dependency, show

dependency and calculate complexity. When we click on the check dependency button, it will

bring all the required MAT LAB files that are needed to run input files and tools (required to

run) as well. Show dependency buttons generates the metrics with the list of all subsystems

and shows the dependency on each other. Calculate Complexity button calculates the fan-in

Tools for analysis of various static software complexities for matlab code

9092

fan-out and list of input/output variables for each functions and then calculates structural

complexity and data complexity and based on these values determines the RSYSC

complexity.

Fig. 4. Shows default position of the proposed Complexity Measure tool

After calculating all the complexity of the halstead .m mat lab file (As example), the result

will be shown as given in figure 5.

Fig. 5. Result after evaluate the complexity of halstead.m file

4 Evaluation

Neha Bharani1*, Dr. Abhay Kothari 2

9093

Static analysis of software complexity metrics, such as size and control flow metrics, form the

basis of our analysis. We've researched five program characteristics in the literature and

concluded that they all have an impact on program complexity.

In order to quantify complexity, we have calculated the Npath, McCabe, and LOC metrics.

And finally, we've used Halstead's software science complexity measures. Next, we calculate

the system complexity RSYSC as a whole. The study of metrics connected to program

execution is considered the fundamental approach to statistical measurement in the fields of

software development and engineering (source code).It covers two aspects that deal with the

various dimensions of program design, like the physical dimensions of the program

(volume/size) as well as the logical dimensions (organization and control structure).

Instead of measuring directly the number of lines in a program, LOC only executable lines

in a program. While counting a number of instructions (source), line used for blank and

commenting lines are ignored. The NPATH counts the number of acyclic execution paths

that attempt to program optimization. For simplicity, we've only examined the control

structures complexity and ignored the instructions' complexity.

Halstead's metrics count the number of operators and operands in the program, and

keep track of the number of times each type appears (code). When calculating the

length, vocabulary, volume, potential volume, estimated program length, difficulty, and

effort, these operators and operands are considered.

For each program P written for implementing our proposed tool are considered to measure

out system complexity. The complexity measured by us i.e Lines of Code (LOC), NPATH

Complexity (NC), McCabb’s complexity (MCC) and Halstead’s software science

complexity (HSSC) are shown in Table IV.

Table 4. Calculation of the static complexity measures for proposed tool

 M
ea

su
re

s

 P
a
ra

m
et

er
s

 C
o
m

p
le

x
it

y

M
ea

s
u
re

.m

 N
p
at

h
.m

 cy
cl

o
m

et
ic

C

o
m

p

le
x
it

y
.m

 h
al

st
ea

d
.m

 S
y
st

em
C

o
m

p
le

x
i t

y
.m

T
o
k
en

.m

 S
et

ti
n
g
.m

 T
o
k
en

iz
e.

m

LOC

TotalLine 538 53 39 65 40 44 92 340

Empty 237 6 10 5 4 10 28 105

Comment 128 6 4 3 8 8 10 21

CodeLine 173 41 25 57 28 26 54 214

Npath NP 14 10 6 13 4 4 2 54

MCC C(G) 5 12 4 15 2 2 1 38

n1 6 19 15 19 6 11 8 26

n2 24 29 30 43 14 13 40 139

N1 16 136 88 200 10 53 106 602

N2 35 115 75 173 22 48 130 570

Vocabular

y
29 48 45 62 20 24 48 165

Length 51 251 163 373 32 101 236 1172

Tools for analysis of various static software complexities for matlab code

9094

HSSC
Volume 250.25 1409.3 900.34 2229.5 140.554

2

469.02 1325.1 8643.5

Difficult 3.6458 37.6724 18.75 38.2209 4.7143 20.3077 13 53.3094

Effort 912.375

0

53091 16881 85215 662.612

5

9524.9 17226 460780

Time 0.8448 49.1587 15.6309 78.9023 0.6135 8.8194 15.9499 426.649

9

Potential

Vol.
122.211

4

153.580

1

160 247.13 64 58.6034 226.477

3

1006.7

Figure 6 shows an example of modular structure of proposed tool that includes the control

flow from one module to another and dependency on each other.

Fig. 6. Example of proposed tools control flow and dependency graph

From the above graph we can calculate the system complexity that can help to determine the

fan-in and fan-out measures for each module. Table shows the modules system

complexity measure. The fan-in of a module M is the number of local flows that

terminate at M. similarly, the fan-out of a module M is the numbers of local flows that

emanate from M. High information flow complexity values indicate highly coupled

components. These modules need to be looked at in terms of fan-in and fan-out to see

how to reduce the complexity level.

Table 5. Module System Complexity measures

Module fin fout f 2 (n f 2 (i) v

variable
DC V

Neha Bharani1*, Dr. Abhay Kothari 2

9095

fan in fan out fan out)2

out

SC

i 1 out

n

(i)

(fout (i)

1).n

ComplexityM

easure

0 5 25 2.77 21 0.39

Npath 1 1 1 0.12 11 0.62

SystemComp

lexity

1 0 0 0 9 1.00

Token 1 2 4 0.45 6 0.23

setting 1 0 0 0 3 0.34

cyclometicCo

mplexity

1 0 0 0 12 1.34

halstead 1 1 1 0.12 15 0.84

Tokenize 2 0 0 0 47 5.23

Sum 8 9 31 3.46 124 9.99

RSYSC avg(SC, DC) RSYSC avg(3.46, 9.99)

RSYSC 6.72

To know whether the entire system has a high-quality project, look at the value of RSYSC. If

the value of RSYSC is less than 25.3, then the entire system has a good quality project. The

tool we're developing has less system complexity, so we can use that as our claim.

5 Conclusion

Software complexity metrics are frequently used to assess the quality of software development

and are an important component of the SDLC. The volume, control, and data-based

complexity of today's software systems necessitate the use of effective testing techniques.

Static analysis could lead to a reduction in software development costs, while also improving

software testing effectiveness and software quality. The paper discusses software complexity

metrics such as LOC, NPATH (NC), McCabb's metrics (MCC), and Halstead's Software

Science Complexity (HSSC) for mat lab program, and introduces a mat lab GUI-based tool

for calculating these various complexity measures. Additionally, In addition, it helps to

determine the dependency on other mat lab files and it also shows the RSYSC complexity of

the system. We also assessed the efficiency of tools in relation to RSYSC, and discovered

that our proposed tools have a lower value than the threshold, implying that our system

achieves less complex structures. We will strive to construct a static complexity analysis

suggestions system that will help developers keep bugs to a minimum while their product is

being built, and we will use these metrics as inputs in neural networks for more accurate

findings. We will use a three-layer neural network with a single hidden layer that will be

trained using different training algorithms to determine the accuracy of software complexity.

We will also use the neural network to implement addition, multiplication, and various

arithmetic operations to determine the complexity of software.

References

Tools for analysis of various static software complexities for matlab code

9096

1. W. Harrisоn, K. Magel, R. Kluczny, and A. Dekоk, Applying Sоftware Cоmplexity Metrics tо

Prоgram Maintenance Cоmpute, vоl. 15, pp. 65-79, 1982.

2. T. J. McCabe. A cоmplexity measure. IEEE Transactiоns оn Sоftware Engineering, (4):308{320,

1976.

3. M. Halstead. Elements оf Sоftware Science (Оperating and Prоgramming Systems Series).

Elsevier Science Inc., New Yоrk, NY, USA, 1977.

4. W. Harrisiоn and L. I. Magel, “A cоmplexity based оn nesting level,” Sigplan Nоtice, vоl. 16, nо.

3, 1981.

5. A. Fitzsimmоns and T. Lоve, “A review and evaluatiоn оf sоftware science,” Cоmputing Survey,

vоl. 10, nо. 1,

March 1978.

6. S. D. Cоnte, H. E Dunsmоre, and V. Y. Shen, “Sоftware engineering metrics and mоdels,”

Benjamin/Cummings Publishing Cоmpany, Inc., 1986.

7. B. A. Nejmeh, “NPATH: A measure оf executiоn path cоmplexity and its applicatiоns,” Cоmm.

оf the ACM, vоl. 31, nо. 2, pp. 188-210, February 1988.

8. E. E. Millis, “Sоftware metrics,” SEI Curriculam Mоdule SEI- CM. vоl. 12, nо. 2.1, Dec, 1988.

9. C. M Chung and M. G Yang, “A sоftware maintainability measurement,” Prоceedings оf the

1988 Science, Engineering and Tech. Hоustоn, Texas, pp. V12-16.

10. S. Kan. Metrics and Mоdels in Sоftware Quality Engineering. Addisоn-Wesley Lоngman

Publishing Cо., Inc., Bоstоn, MA, USA, 2nd editiоn, 2002.

11. Henry, S. & Kafura, D. (1981). Sоftware structure metrics based оn infоrmatiоn flоw. IEEE

transactiоn оf sоftware engineering, SE-7(5), 510-518.

12. D.N. Card, W.W. Agresti, Measuring sоftware design cоmplexity, Jоurnal оf Systems and

Sоftware, Vоlume 8, Issue 3, 1988, Pages 185-197.

13. S. Henry and C. Selig. Predicting sоurce-cоde cоmplexity at the design stage. IEEE Sоftware,

7(2):36{44, Mar. 1990.

14. M. Shepperd and D. Ince. Derivatiоn and Validatiоn оf Sоftware Metrics. Internatiоnal Series оf

Mоnоgraphs оn Cоmputer Science. Clarendоn Press, 1993.

15. Y. Dajsuren, A. Serebrenik, R.G.M. Huisman, and M.G.J. van den Brand. A quality framewоrk

fоr evaluating autоmоtive architecture. In the FISITA Wоrld Autоmоtive Cоngress, pages 1-7.

FISITA, 2014.

16. D. P. Sharma,Professor, Dept. of Computer Science,Dean, Sciences.St. Joseph’s Hyderabad,

India,College, Neural Network Simulation of Digital Circuits, International Journal of Computer

Applications (0975 – 8887)

Volume 79 – No6, October 2013

