Evaluation of the Risk of Collision Between Two Target Ships Based On Observation Data From A Third Party

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 7, July, 2021:1413-1426

Evaluation of the Risk of Collision Between Two Target Ships Based On Observation Data From A Third Party

Hoang Hong Giang ${ }^{\text {a }}$, Pham Van Thuan ${ }^{\text {b }}$, Tran Van Luong ${ }^{\text {c }}$, Luong Tu Nam ${ }^{\text {d }}$
a,b,c,d Vietnam Maritime Administration, No.8Pham Hung Street, Hanoi, Vietnam

Abstract

Detecting the risk of collision is a very important step to prevent marine accidents. For detecting the risk of collision, radar plotting is often used. Based on therelative position and motion of two ships, the risk of collision between them can be evaluated. However, the present radar equipmentis not supported to detect the risk of collision between two target ships from the observation data measured by a third party. This causes difficulties for officers of shore stations, when evaluating the marine traffic situation to maintain the safety of navigation.To solve this problem, it is necessary to develop a method to evaluate the risk of collision between two target ships from the observation data measured by the shore station radar (the third party). In this article, the development of such method is introduced..

Keywords: risk of collision, radar plotting, marine accident

1. Introduction

The collision between ship often causes huge loss of lives, properties, and damages to the environment. Preventing collision at sea and/or in the waterway is a very important duty of not only ship officers, but also port authorities. To prevent collision, the risk of collision should be evaluated in advance to achieve a sufficient amount of time for necessaryactions.

According to Rule 7d of the International Convention for Preventing Collision at Sea, ifthe risk of collision exists the following considerations shall be among those taken into account:
(i) such risk shall be deemed to exist it the compass true bearing of an approaching vessel does not appreciably change;
(ii) such risk may sometimes exist even when an appreciable true bearing change is evident, particularly when approaching a very large vessel or a tow or when approaching a vessel at close range.

To detect the risk of collision, radar is often used. Observation of radar plotting method isconducted to assess the risk of collision between own ship and target ships. By applying theradar plotting method, the risk of collision between own ship and target shipscan be deemed to exist when two below conditions are met:

- The value of closest point of approach (CPA) is smaller than $\mathrm{CPA}_{\text {min }}$
- The value of time to the closest point of approach $\left(\mathrm{T}_{\mathrm{CPA}}\right)$ is positive.

In marine practice, a ship's radar possesses the automatic radar plotting aids (ARPA) function which assists mariners to the values of CPA and $\mathrm{T}_{\text {CPA }}$ automatically. This function allows for a faster detection of the risk of collision. However, this function does not allow for the detection the risk of collision between target ships.

The radar of shore stations faces the same situation relating tothis function, making it difficult to detect the risk of collision.To solve this problem, it is necessary to develop a method to evaluate the risk of collision between two target ships from the observation data measured by the shore station radar (the third party). This will assist officers of shore stations inevaluating the risk of collision between ships, thereby managing the traffic conditions more efficiently. In this article, the development of such method is introduced.

Hoang Hong Giang, Pham Van Thuan, Tran Van Luong, Luong Tu Nam

2. Development of a method to evaluate the risk of collision between two target ships from the observation data measured by the shore station radar

Collision risk between ships could be assessedusingmany methods. The method used in this paper is an analytical method, which assess collision risk directly by analytical expressions and ship movement parameters. When a ship is about to collide with another ship, collision risk should be evaluated before deciding the next movement of the ship. The CPA and TCPA are the most important factors when assessing the risk of collision between ships in a practical scenario.With the intention of simple, fast calculation and application, a method through which collision risk can be directly calculated byobservation data measured by the shore station radar wasproposed, including three steps.First, the positions of target ships will be obtained. The second step is the calculation of distance and true bearing between pairs of ships. Finally, the collision risk between these ships will be assessed by CPA.

2.1. Determination of target ships' positions from the shore station

For certain water area, there will be plenty of ships at the same time. To assess the collision risk between ships, the positions of ships are calculated by getting the inputs from radar. Initially, the true bearings and distances from shore station radar toships are recorded. The number of ships about which we can get information depends on the radar range.These ships consist of a ship set, denoted by set S :
$S=\{s \mid s=1,2,3, \ldots, i\}$, where i is the total number of observed ships.
Given the position of the shore station radar: $\left(\varphi_{0}, \lambda_{0}\right)$, the first stage of our method is the calculation of thepositions of target ships.

The input data of ships observed from the shore station radar are true bearing and distance, which are denoted asS ${ }_{1}\left(\mathrm{PT}_{\mathrm{S} 1}, \mathrm{D}_{\mathrm{S} 1}\right), \mathrm{S}_{2}\left(\mathrm{PT}_{\mathrm{S} 2}, \mathrm{D}_{\mathrm{S} 2}\right), \ldots, \mathrm{S}_{\mathrm{i}}\left(\mathrm{PT}_{\mathrm{Si}}, \mathrm{D}_{\mathrm{Si}}\right)$.

A two-dimensional Cartesian coordinate system OXY in constructed with the vertical axis, with its positive direction representing North 0°, and the horizontal axis in the positive direction representing 90°. Due to the difference in ratio between longitude and latitude, the position in longitude and latitude is converted to OXY coordinates as follows:

$$
\left\{\begin{array}{c}
X=R \lambda \cos \varphi_{T G} \tag{1}\\
Y=R \varphi
\end{array}\right.
$$

where:
R is theradius of Earth(nautical miles)
λ is longitude (rad)
φ is latitude (rad)
φ_{TG} is middle latitude (rad) (in this paper, the middle latitude is selected to be the latitude of the shore station φ_{0})

After applying Equation (1) to the longitude λ_{0} and latitude φ_{0}, the OXY coordinates of the shore station is $\left(\mathrm{X}_{0}, \mathrm{Y}_{0}\right)$.The area around the shore station is divided into four quarter I, II, III, IV, following a clockwise direction from North 0°.

Suppose that the target ship is S_{1} with coordinate ($\mathrm{X}_{1}, \mathrm{Y}_{1}$) needed to be determined by applying geometry theory. $\mathrm{PT}_{\mathrm{S} 1}$ and $\mathrm{D}_{\mathrm{S} 1}$ are true bearing and thedistance measured to ship S_{1} from the shore station respectively. The target ship could be in one of these four quarters, as demonstrated in Figure 1. The variation in latitude and longitude between ship S_{1} and the shore station are denoted as $\Delta \mathrm{X}, \Delta \mathrm{Y}$.

Fig. 1 Target ship observed from the shore station
In case target ship in the quarter I (Figure 1a), then $0^{\circ} \leq \mathrm{PT}_{\mathrm{S} 1} \leq 90^{\circ}$, we have $\mathrm{X}_{1}>\mathrm{X}_{0}$ and $\mathrm{Y}_{1}>\mathrm{Y}_{0}$, the position of target ship S_{1} can be obtained from the shore station as follows:

$$
\left\{\begin{array} { l }
{ \Delta X = X _ { 1 } - X _ { 0 } = D _ { S 1 } \operatorname { s i n } P T _ { S 1 } } \tag{2}\\
{ \Delta Y = Y _ { 1 } - Y _ { 0 } = D _ { S 1 } \operatorname { c o s } P T _ { S 1 } }
\end{array} \rightarrow \left\{\begin{array}{l}
X_{1}=X_{0}+D_{S 1} \sin P T_{S 1} \\
Y_{1}=Y_{0}+D_{S 1} \cos P T_{S 1}
\end{array}\right.\right.
$$

In case target ship in the quarter II (Figure 1b), then $90^{\circ}<\mathrm{PT}_{\mathrm{S} 1} \leq 180^{\circ}$, we have $\mathrm{X}_{1}>\mathrm{X}_{0}$ and $\mathrm{Y}_{1}<\mathrm{Y}_{0}$, the position of target ship S_{1} can be obtained from the shore station as follows:

$$
\left\{\begin{array} { l }
{ \Delta X = X _ { 1 } - X _ { 0 } = D _ { S 1 } \operatorname { s i n } P T _ { S 1 } } \tag{3}\\
{ \Delta Y = Y _ { 0 } - Y _ { 1 } = - D _ { S 1 } \operatorname { c o s } P T _ { S 1 } }
\end{array} \rightarrow \left\{\begin{array}{l}
X_{1}=X_{0}+D_{S 1} \sin P T_{S 1} \\
Y_{1}=Y_{0}+D_{S 1} \cos P T_{S 1}
\end{array}\right.\right.
$$

In case target ship in the quarter III (Figure 1c), then $180^{\circ}<\mathrm{PT}_{\mathrm{S} 1} \leq 270^{\circ}$, we have $\mathrm{X}_{1}<\mathrm{X}_{0}$ and $\mathrm{Y}_{1}<\mathrm{Y}_{0}$, the position of target ship S_{1} can be obtained from the shore station as follows:

$$
\left\{\begin{array} { l }
{ \Delta X = X _ { 0 } - X _ { 1 } = - D _ { S 1 } \operatorname { s i n } P T _ { S 1 } } \tag{4}\\
{ \Delta Y = Y _ { 0 } - Y _ { 1 } = - D _ { S 1 } \operatorname { c o s } P T _ { S 1 } }
\end{array} \rightarrow \left\{\begin{array}{l}
X_{1}=X_{0}+D_{S 1} \sin P T_{S 1} \\
Y_{1}=Y_{0}+D_{S 1} \cos P T_{S 1}
\end{array}\right.\right.
$$

In case target ship in the quarter IV (Figure 1d), then $270^{\circ}<\mathrm{PT}_{\mathrm{S} 1} \leq 360^{\circ}$, we have $\mathrm{X}_{1}<\mathrm{X}_{0}$ and $\mathrm{Y}_{1}>\mathrm{Y}_{0}$, the position of target ship S_{1} can be obtained from the shore station as follows:

$$
\left\{\begin{array} { c }
{ \Delta X = X _ { 0 } - X _ { 1 } = - D _ { S 1 } \operatorname { s i n } P T _ { S 1 } } \tag{5}\\
{ \Delta Y = Y _ { 1 } - Y _ { 0 } = D _ { S 1 } \operatorname { c o s } P T _ { S 1 } }
\end{array} \rightarrow \left\{\begin{array}{l}
X_{1}=X_{0}+D_{S 1} \sin P T_{S 1} \\
Y_{1}=Y_{0}+D_{S 1} \cos P T_{S 1}
\end{array}\right.\right.
$$

Applying similar calculations with known data (true bearing and distance) for other target ships around the shore station, the positions of these ships can be obtained.

2.2. Determination of true bearing and distance between pairs of target ships

In Section 2.1, the positions of all ships observed from the shore station are obtained. To assess the collision risk between pairs of target ships, two parameters need to be specified:true bearing and thedistance between these ships. The distance is the radius that connects the ships intoan encounter cluster.Assuming that there are two ships: $S_{1}\left(X_{1}, Y_{1}\right)$ and $S_{2}\left(X_{2}, Y_{2}\right)$, the vicinity around ship $S_{\text {lcan be }}$ similarly divided into four quarters, following a clockwise direction from North 0°. The distance and true bearing calculated from S_{1} to S_{2} are computed according to the position of ship S_{2} in eachquarter of ship S_{1}, as shown in Figure 2.

(a) Ship 2 in quarter I of ship 1

(c) Ship 2 in quarter III of ship 1

(b) Ship 2 in quarter II of ship 1

(d) Ship 2 in quarter IV of ship 1

Fig. 2 Position of ship S_{2} observed from S_{1}
The distance D_{1} and true bearing PT_{1} from ship S_{1} to ship S_{2} can be calculated by their coordinates $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$ and $\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$ in four cases as follows:

Case 1: $X_{2}>X_{1}, Y_{2}>Y_{1}$ (in Figure 2a)

$$
\left\{\begin{array}{l}
D_{1}=\sqrt{\left(X_{2}-X_{1}\right)^{2}+\left(Y_{2}-Y_{1}\right)^{2}} \tag{6}\\
\quad P T_{1}=\arctan \left(\frac{X_{2}-X_{1}}{Y_{2}-Y_{1}}\right)
\end{array} \text { with }\left(0^{\circ} \leq P T_{1} \leq 90^{\circ}\right)\right.
$$

Case 2: $\mathrm{X}_{2}>\mathrm{X}_{1}, \mathrm{Y}_{2}<\mathrm{Y}_{1}$ (in Figure 2b)

$$
\left\{\begin{array}{l}
D_{1}=\sqrt{\left(X_{2}-X_{1}\right)^{2}+\left(Y_{1}-Y_{2}\right)^{2}} \tag{7}\\
P T_{1}=180^{\circ}-\arctan \left(\frac{X_{2}-X_{1}}{Y_{1}-Y_{2}}\right)^{\text {with }}\left(90^{\circ}<P T_{1} \leq 180^{\circ}\right)
\end{array}\right.
$$

Case 3: $\mathrm{X}_{2}<\mathrm{X}_{1}, \mathrm{Y}_{2}<\mathrm{Y}_{1}($ in Figure 2c)

$$
\left\{\begin{array}{l}
D_{1}=\sqrt{\left(X_{1}-X_{2}\right)^{2}+\left(Y_{1}-Y_{2}\right)^{2}} \tag{8}\\
P T_{1}=180^{\circ}+\arctan \left(\frac{X_{1}-X_{2}}{Y_{1}-Y_{2}}\right)^{\text {with }}\left(180^{\circ}<P T_{1} \leq 270^{\circ}\right)
\end{array}\right.
$$

Evaluation of the Risk of Collision Between Two Target Ships Based On Observation Data From A Third Party

Case 4: $\mathrm{X}_{2}<\mathrm{X}_{1}, \mathrm{Y}_{2}>\mathrm{Y}_{1}(\mathrm{in}$ Figure 2d)

$$
\left\{\begin{array}{l}
D_{1}=\sqrt{\left(X_{1}-X_{2}\right)^{2}+\left(Y_{2}-Y_{1}\right)^{2}} \tag{9}\\
P T_{1}=360^{\circ}-\arctan \left(\frac{X_{1}-X_{2}}{Y_{1}-Y_{2}}\right)^{\text {with }}\left(270^{\circ}<P T_{1}<360^{\circ}\right)
\end{array}\right.
$$

The collision risk between target ships will thenbe assessed in the following section.

2.3 Collision risk assessment between pair of target ships

There are many ships that sail within the scope of a maritime surveillance system from a third party. One desired function ofthis system is to evaluate and provide a ranked list of ships at risk. For that, the collisionrisk of ships could be continuously estimated andtracked automatically to monitor the surveilled sea areas. Then, the shore station can corporate and give instructions to ships in particularly highrisk, to initiate evasiveactions and trajectory to reduce the collision risk.

In the above sections, input parameters for collision risk assessment are collected. Let O be the ship and A, B bethe positions of target ships at time t_{1}, t_{2} respectively.Let $\mathrm{PT}_{1}, \mathrm{D}_{1}$ be the true bearing and distance from target ship S_{1} to S_{2} at time t_{1} respectively, and PT_{2}, D_{2} be the true bearing and distance from target ship S_{1} to S_{2} at time t_{2} respectively.

According to the radar plotting for collision avoidance, therisk of collision is determined by two factors: CPA and DCPA.Based on these input data, the CPA and TCPA are calculated for thepair of ships in encounter.The CPA calculation method is widely adopted for collision avoidance research.A collision risk exists when $\mathrm{CPA}<\mathrm{CPA}_{\min }$ and TCPA >0, meaningthat two ships are coming closer and closer without change or with only little changes intrue bearing. The algorithm to compute CPA and TCPA is constructed as follow:
2.3.1. If there is no difference of true bearing between two observations, $\mathrm{PT}_{1}=\mathrm{PT}_{2}$ then $\mathrm{CPA}=0$. In this case, one ship can keep the distance, move closer or further to another.
2.3.1.1 In case $D_{1}=D_{2}$, it reveals that the relative position between two ships during the encounter is unchanged. Both the own ship and target ship are moving in the same direction with the same speed. The CPA and TCPA in this situation cannot be obtained and thecollision risk does not exist.
2.3.1.2 With the situation as in Figure 3, two ships are approaching to each other ($\mathrm{D}_{1}>\mathrm{D}_{2}$). The extended trajectory of the marker of target ship is passing the own ship, therefore $\mathrm{CPA}=0$.

Fig. 3 Two ships are approaching without change of true bearing
The initial speed V_{E} and initial course C_{E} of the marker of target ship will be calculated as follows:

$$
\left\{\begin{array}{c}
V_{E}=\frac{D_{1}-D_{2}}{t_{2}-t_{1}} \tag{10}\\
C_{E}=P T_{2}+180^{\circ}
\end{array}\right.
$$

Due to the need for the course tobe in range from 0° to 360°, if $\mathrm{C}_{\mathrm{E}}>360^{\circ}$, only the value of ($\mathrm{C}_{\mathrm{E}}-360^{\circ}$) will be utilized.

The TCPA is computed as:

$$
\begin{equation*}
T C P A=\frac{D_{2}}{V_{E}} \tag{11}
\end{equation*}
$$

Without anychange in true bearing and a decrease of distance, the CPA $=0$ and TCPA >0, thus, there will be collision risk between thetwo ships.
2.3.1.3 When two ships are moving far away $\left(D_{1}<D_{2}\right)$, the $C P A=0$ and a similar calculation for V_{E}, C_{E} is carried out (in Figure 4).

Fig. 4 Two ships are moving far away without change of true bearing
Because the target ship hasalready crossed the closest point of approach, therefore $\mathrm{V}_{\mathrm{E}}<0$; it leads to TCPA < 0 . Hence, in case of a ship moving further from each other, aconflict will not occur.
2.3.2 A ship may change or intend to change the course when approaching. The true bearing of the the target ship at two observations will thereforevary $\left(\mathrm{PT}_{1} \neq \mathrm{PT}_{2}\right)$.

If the target ship is changing the course, its trajectory will be a curved trajectory rather than a straight line. Theapproaching situationthereforesignificantly differs compared to the previous situation.
2.3.2.1 When two ships are moving closer $\left(D_{1}>D_{2}\right)$, the distance observed of the marker of the target ship is as:

$$
\begin{equation*}
A B=\sqrt{D_{1}^{2}+D_{2}^{2}-2 D_{1} D_{2} \cos \left(P T_{1}-P T_{2}\right)} \tag{12}
\end{equation*}
$$

In triangle OAH , we know that:

$$
\begin{equation*}
\widehat{O A H}=\operatorname{arcos}\left(\frac{D_{1}^{2}+A B^{2}-D_{2}^{2}}{2 A B \cdot D_{1}}\right) \tag{13}
\end{equation*}
$$

Fig. 5 Two ships are moving closer with change of true bearing
CPA and TCPA can be calculated as follow:

$$
\left\{\begin{array}{c}
C P A=D_{1} \sin \widehat{O A H} \tag{14}\\
T C P A=\frac{D_{1} \sin \widehat{O A H}-A B}{V_{E}}
\end{array}\right.
$$

In triangle OBH :

$$
\begin{equation*}
\widehat{O B H}=\operatorname{arsin}\left(\frac{C P A}{D_{2}}\right) \tag{15}
\end{equation*}
$$

The opposite bearing between two ships PTN_{1} and PTN_{2} in each observation can be calculated as follows:
If $P T_{1}+180^{\circ}<360^{\circ}$ then $P T N_{1}=P T_{1}+180^{\circ}$
If $P T_{1}+180^{\circ}>360^{\circ}$ then $P T N_{1}=\left(P T_{1}+180^{\circ}\right)-360^{\circ}$
If $P T_{2}+180^{\circ}<360^{\circ}$ then $P T N_{2}=P T_{2}+180^{\circ}$
If $P T_{2}+180^{\circ}>360^{\circ}$ then $P T N_{2}=\left(P T_{2}+180^{\circ}\right)-360^{\circ}$
Similarly, the relative bearing between two ships GM_{1} and GM_{2} in each observation can be calculated, and therelative position of ships can be obtainedas follow:
If $0^{\circ} \leq P T_{1}-C_{0} \leq 180^{\circ}$ then $G M_{1}=P T_{1}-C_{0} \quad$ (in starboard)
If $P T_{1}-C_{0} \leq-180^{\circ}$ then $G M_{1}=360^{\circ}-\left(P T_{1}-C_{0}\right) \quad$ (in starboard)
If $P T_{1}-C_{0}>180^{\circ}$ then $G M_{1}=\left(P T_{1}-C_{0}\right)-360^{\circ} \quad$ (in port)
If $-180^{\circ}<P T_{1}-C_{0}<180^{\circ}$ then $G M_{1}=\left(P T_{1}-C_{0}\right)-360^{\circ}$ (in port)
If $0^{\circ} \leq P T_{2}-C_{0} \leq 180^{\circ}$ then $G M_{2}=P T_{2}-C_{0} \quad$ (in starboard)
If $P T_{2}-C_{0} \leq-180^{\circ}$ then $G M_{2}=360^{\circ}-\left(P T_{2}-C_{0}\right) \quad$ (in starboard)
If $P T_{2}-C_{0}>180^{\circ}$ then $G M_{2}=\left(P T_{2}-C_{0}\right)-360^{\circ} \quad$ (in port)
If $-180^{\circ}<P T_{2}-C_{0}<180^{\circ}$ then $G M_{2}=\left(P T_{2}-C_{0}\right)-360^{\circ}$ (in port)
where C_{0} is the initial course of the own ship.

The speed of the marker of the target ship can be calculated as follow:

$$
\begin{equation*}
V_{E}=\frac{A B}{t_{2}-t_{1}} \tag{18}
\end{equation*}
$$

The course of the marker of the target ship can be calculated based on the relative position between two ships as follow:

$$
\text { If } 0^{\circ}<G M_{1} \text { and } G M_{2}<180^{\circ}(\text { in starboard })
$$

then if $G M_{1}>G M_{2}$ (the targetship crossing the bow)

$$
\begin{aligned}
& \text { then } C_{E}=P T N_{2}+\widehat{O B H} \\
& \text { if } G M_{1}<G M_{2} \text { (the targetship crossing the stern) }
\end{aligned}
$$

then $C_{E}=P T N_{2}-\widehat{O B H}$

$$
\text { If }-180^{\circ}<G M_{1} \text { and } G M_{2}<0^{\circ}(\text { in port })
$$

then if $G M_{1}>G M_{2}$ (the targetship crossing the stern)
then $C_{E}=P T N_{2}+\widehat{O B H}$
if $G M_{1}<G M_{2}$ (the targetship crossing the bow)
then $C_{E}=P T N_{2}-\widehat{O B H}$

$$
\text { If }-90^{\circ} \leq G M_{1} \leq 0^{\circ} \text { and } 0^{\circ} \leq G M_{2} \leq 90^{\circ}(\text { the targetship crossing the bow })
$$

then $C_{E}=P T N_{2}-\widehat{O B H}$

$$
\text { If } 0^{\circ}<G M_{1} \leq 90^{\circ} \text { and }-90^{\circ} \leq G M_{1}<0^{\circ}(\text { the targetship crossing the bow })
$$

then $C_{E}=P T N_{2}+\widehat{O B H}$
If $90^{\circ}<G M_{1} \leq 180^{\circ}$ and $-180^{\circ} \leq G M_{2} \leq-90^{\circ}$ (the targetship crossing the stern)
then $C_{E}=P T N_{2}+\widehat{O B H}$
If $-180^{\circ} \leq G M_{1}<-90^{\circ}$ and $90^{\circ}<G M_{2} \leq 180^{\circ}$ (the targetship crossing the stern)
then $C_{E}=P T N_{2}-\widehat{O B H}$
If $\mathrm{C}_{\mathrm{E}}>360^{\circ}$, only the value of $\left(\mathrm{C}_{\mathrm{E}}-360^{\circ}\right)$ will be used.
In this case, two ships are moving closer, then TCPA >0. To evaluate the risk of collision, CPA needs to be compared with $\mathrm{CPA}_{\text {min }}$. If $\mathrm{CPA}<\mathrm{CPA}_{\text {min }}$, we can conclude that the collision risk exists.
2.3.2.2In contrast to the above situation, if $\mathrm{D}_{1}<\mathrm{D}_{2}$, two ships are moving far from each other (in Figure 6)

Evaluation of the Risk of Collision Between Two Target Ships Based On Observation Data From A Third Party

Fig. 6 Two ships are moving far away with change of true bearing
Using equations (12) - (17), CPA, TCPA, opposite bearing and relative bearing can be calculated. However, there are differences in thecalculation of speed and thecourse of the marker of the target ship:

$$
\begin{equation*}
V_{E}=-\frac{A B}{t_{2}-t_{1}} \tag{20}
\end{equation*}
$$

$$
\text { If } 0^{\circ}<G M_{1} \text { and } G M_{2}<180^{\circ}(\text { in starboard })
$$

then if $G M_{1}>G M_{2}$ (the targetship crossing the bow)
then $C_{E}=P T N_{2}+180^{\circ}-\widehat{O B H}$
if $G M_{1}<G M_{2}$ (the targetship crossing the stern)
then $C_{E}=P T N_{2}-180^{\circ}+\widehat{O B H}$

$$
\text { If }-180^{\circ}<G M_{1} \text { and } G M_{2}<0^{\circ}(\text { in port })
$$

then if $G M_{1}>G M_{2}$ (the targetship crossing the stern)
then $C_{E}=P T N_{2}+180^{\circ}+\widehat{O B H}$
if $G M_{1}<G M_{2}$ (the targetship crossing the bow)
then $C_{E}=P T N_{2}-180^{\circ}-\widehat{O B H}$
If $-90^{\circ} \leq G M_{1} \leq 0^{\circ}$ and $0^{\circ} \leq G M_{2} \leq 90^{\circ}$ (the targetship crossing the bow)
then $C_{E}=P T N_{2}-180^{\circ}+\widehat{O B H}$
If $0^{\circ}<G M_{1} \leq 90^{\circ}$ and $-90^{\circ} \leq G M_{1}<0^{\circ}$ (the targetship crossing the bow)
then $C_{E}=P T N_{2}+180^{\circ}-\widehat{O B H}$
If $90^{\circ}<G M_{1} \leq 180^{\circ}$ and $-180^{\circ} \leq G M_{2} \leq-90^{\circ}$ (the targetship crossing the stern)
then $C_{E}=P T N_{2}-180^{\circ}+\widehat{O B H}$

$$
\text { If }-180^{\circ} \leq G M_{1}<-90^{\circ} \text { and } 90^{\circ}<G M_{2} \leq 180^{\circ}(\text { the targetship crossing the stern })
$$

then $C_{E}=P T N_{2}+180^{\circ}-\widehat{O B H}$
If $\mathrm{C}_{\mathrm{E}}>360^{\circ}$, only the value of $\left(\mathrm{C}_{\mathrm{E}}-360^{\circ}\right)$ will be used.
Because of two ships moving further and further, there is no collision risk.

3. Evaluation of the accuracy of thecalculations of CPA, TCPA from the observation data measured by the shore station radar

In theprevious part, the method to evaluate the risk of collision is introduced. Toexamine this method, the experiments were carried out using ship handling simulator in Vietnam Maritime University. Thissimulator was designed by Transas. It was approved by Det Norske Veritas.

To evaluate the accuracy of thecalculation of CPA, TCPA introduced in part 2, a scenario of crossing situation of 2 bulk carriers was set in calm condition. Both were requested to maintain their course and speed during theexperiments. Their positions, course, andspeed were recorded. From our own ship, by using ARPA function, the CPA, TCPA of target ship were acquired and recorded.

From the bulk carriers' data of position, we set 4 virtual VTS in positions as following:
Table 3.1. Positions of virtual VTS

VTS 1	20.71074 N	107.0212 E
VTS 2	20.60344 N	106.9787 E
VTS 3	20.59573 N	106.7909 E
VTS 4	20.66689 N	106.8162 E

The arrangements of bulk carriers and 4 virtual VTSs are shown in Fig.7:

Fig.7. Arragement of bulk carriers and 4 virtual VTSs
The data collected fromtheexperiment isshown in Table 3.2
Table 3.2. data of experiment

Own ship (OS)				Target ship (TS)				$C P A$	TCPA	Time	
Lattitude		Longitude		Lattitude		Longitude					
20	37.946	106	52.359	20	38.05	106	54.57	0.1	10	12:02:33	t1
20	38.142	106	52.507	20	38.17	106	54.37	0.1	9.4	12:03:49	t2
20	38.307	106	52.633	20	38.32	106	54.27	0.1	8.4	12:04:55	t3
20	38.449	106	52.739	20	38.48	106	54.18	0.1	7.4	12:05:56	t4

Evaluation of the Risk of Collision Between Two Target Ships Based On Observation Data From A Third Party

20	38.6	106	52.853	20	38.61	106	54.11	0.1	6.4	$12: 06: 56$	$t 5$
20	38.745	106	52.963	20	38.74	106	54.01	0.1	5.4	$12: 07: 58$	$t 6$
20	38.912	106	53.09	20	38.89	106	53.95	0.1	4.3	$12: 09: 03$	$t 7$
20	39.026	106	53.176	20	39.01	106	53.86	0.1	3.5	$12: 09: 52$	$t 8$
20	39.144	106	53.266	20	39.13	106	53.8	0.1	2.6	$12: 10: 43$	$t 9$
20	39.283	106	53.373	20	39.25	106	53.72	0	1.7	$12: 11: 41$	$t 10$
20	39.378	106	53.448	20	39.34	106	53.67	0	1	$12: 12: 20$	$t 11$
20	39.492	106	53.535	20	39.44	106	53.61	0	0.3	$12: 13: 03$	$t 12$

The virtual bearings and distances from 4 VTSs to own ship and target ship are shown in Table 3.3, 3.4, 3.5, 3.6:

Table 3.3.Virtual bearings and distances from VTS1 to OS and TS

Time		OS				TS			
		D(OS)	PT(OS)	Lat	Long	D(OS)	PT(OS)	Lat	Long
$t 1$	12:02:33	17.739	240.63	20.63243	106.8727	14.407	233.8	20.63417	106.9095
t2	12:03:49	17.338	241.26	20.6357	106.8751	14.531	235.25	20.63617	106.9065
t3	12:04:55	17	241.81	20.63845	106.8772	14.504	236.53	20.63867	106.9049
t4	12:05:56	16.714	242.31	20.64082	106.879	14.51	237.69	20.64133	106.9034
t5	12:06:56	16.41	242.85	20.64333	106.8809	14.493	238.88	20.6435	106.902
t6	12:07:58	16.118	243.39	20.64575	106.8827	14.505	240.06	20.64567	106.9004
$t 7$	12:09:03	15.783	244.04	20.64853	106.8848	14.491	241.36	20.64817	106.899
t8	12:09:52	15.557	244.49	20.65043	106.8863	14.515	242.31	20.65017	106.8977
t9	12:10:43	15.323	244.98	20.6524	106.8878	14.546	243.29	20.65217	106.8963
t10	12:11:41	15.046	245.57	20.65472	106.8896	14.564	244.41	20.65417	106.895
$t 11$	12:12:20	14.855	245.98	20.6563	106.8908	14.583	245.18	20.65567	106.894
$t 12$	12:13:03	14.632	246.49	20.6582	106.8923	14.581	246.13	20.65733	106.8931

Table 3.4.Virtual bearings and distances from VTS2 to OS and TS

Time		OS				TS			
		$D(O S)$	PT(OS)	Lat	Long	D(OS)	PT(OS)	Lat	Long
t1	12:02:33	11.493	286.31	20.63243	106.8727	7.966	295.41	20.63417	106.9095
t2	12:03:49	11.356	288.43	20.6357	106.8751	8.349	295.89	20.63617	106.9065
t3	12:04:55	11.251	290.26	20.63845	106.8772	8.618	297.13	20.63867	106.9049
t4	12:05:56	11.173	291.85	20.64082	106.879	8.875	298.03	20.64133	106.9034
$t 5$	12:06:56	11.099	293.57	20.64333	106.8809	9.13	299.08	20.6435	106.902
t6	12:07:58	11.036	295.25	20.64575	106.8827	9.393	299.93	20.64567	106.9004
$t 7$	12:09:03	10.975	297.2	20.64853	106.8848	9.672	301	20.64817	106.899
t8	12:09:52	10.942	298.54	20.65043	106.8863	9.889	301.6	20.65017	106.8977
$t 9$	12:10:43	10.912	299.94	20.6524	106.8878	10.118	302.17	20.65217	106.8963

Hoang Hong Giang, Pham Van Thuan, Tran Van Luong, Luong Tu Nam

$t 10$	$12: 11: 41$	10.884	301.6	20.65472	106.8896	10.371	302.92	20.65417	106.895
$t 11$	$12: 12: 20$	10.868	302.75	20.6563	106.8908	10.548	303.39	20.65567	106.894
$t 12$	$12: 13: 03$	10.858	304.12	20.6582	106.8923	10.753	304.09	20.65733	106.8931

Table 3.5.Virtual bearings and distances from VTS3 to OS and TS

Time		OS				TS			
		$D(O S)$	PT(OS)	Lat	Long	D(OS)	PT(OS)	Lat	Long
$t 1$	12:02:33	9.439	64.37	20.63243	106.8727	13.064	70.89	20.63417	106.9095
t2	12:03:49	9.83	63.11	20.6357	106.8751	12.845	69.47	20.63617	106.9065
t3	12:04:55	10.164	62.13	20.63845	106.8772	12.799	68.03	20.63867	106.9049
t4	12:05:56	10.451	61.32	20.64082	106.879	12.74	66.75	20.64133	106.9034
$t 5$	12:06:56	10.759	60.52	20.64333	106.8809	12.716	65.38	20.6435	106.902
t6	12:07:58	11.058	59.79	20.64575	106.8827	12.676	64.06	20.64567	106.9004
$t 7$	12:09:03	11.405	59	20.64853	106.8848	12.674	62.56	20.64817	106.899
t8	12:09:52	11.642	58.49	20.65043	106.8863	12.65	61.48	20.65017	106.8977
t9	12:10:43	11.89	57.98	20.6524	106.8878	12.627	60.35	20.65217	106.8963
$t 10$	12:11:41	12.185	57.42	20.65472	106.8896	12.629	59.05	20.65417	106.895
$t 11$	12:12:20	12.389	57.06	20.6563	106.8908	12.631	58.16	20.65567	106.894
t12	12:13:03	12.631	56.62	20.6582	106.8923	12.666	57.07	20.65733	106.8931

Table 3.6.Virtual bearings and distances from VTS4 to OS and TS

Time		OS				TS			
		D(OS)	PT(OS)	Lat	Long	$D(O S)$	PT(OS)	Lat	Long
t1	12:02:33	7.014	123.1	20.63243	106.8727	10.368	110.53	20.63417	106.9095
t2	12:03:49	7.044	119.48	20.6357	106.8751	9.994	109.94	20.63617	106.9065
t3	12:04:55	7.094	116.46	20.63845	106.8772	9.749	108.69	20.63867	106.9049
t4	12:05:56	7.148	113.91	20.64082	106.879	9.518	107.63	20.64133	106.9034
t5	12:06:56	7.223	111.25	20.64333	106.8809	9.302	106.34	20.6435	106.902
t6	12:07:58	7.31	108.74	20.64575	106.8827	9.078	105.12	20.64567	106.9004
$t 7$	12:09:03	7.428	105.94	20.64853	106.8848	8.86	103.53	20.64817	106.899
t8	12:09:52	7.517	104.07	20.65043	106.8863	8.685	102.46	20.65017	106.8977
t9	12:10:43	7.619	102.19	20.6524	106.8878	8.505	101.3	20.65217	106.8963
$t 10$	12:11:41	7.752	100.04	20.65472	106.8896	8.319	99.82	20.65417	106.895
$t 11$	12:12:20	7.851	98.61	20.6563	106.8908	8.193	98.78	20.65567	106.894
$t 12$	12:13:03	7.792	96.95	20.6582	106.8923	8.063	97.32	20.65733	106.8931

The comparision between calculated data of CPA and TCPA using above method and indicating data of CPA and TCPA on radar screen are shown in Table 3.7.

Table 3.7. Calculated data of CPA and TCPA using above method and indicating data of CPA and TCPA on radar screen

Time		Δt	PT12 (0)	PT21 (0)	$V E$	Tínhtoán		ARPA		
		TCPA (m)				CPA (NM)	$\begin{aligned} & T C P A \\ & (m) \end{aligned}$	$\begin{aligned} & C P A \\ & (N M) \end{aligned}$		
t1	12:02:33			88.8	267.13			0.1	10	0.1
t2	12:03:49	0.021111	89	269.09	11.27368	9.38	0.1	9.4	0.1	
t3	12:04:55	0.018333	89.3	269.52	11.12727	8.40	0.1	8.4	0.1	
t4	12:05:56	0.016944	89.7	268.69	11.09508	7.41	0.1	7.4	0.1	
t5	12:06:56	0.016667	90	269.52	11.1	6.41	0.1	6.4	0.1	
t6	12:07:58	0.017222	90.6	270.3	11.03226	5.41	0.1	5.4	0.1	
$t 7$	12:09:03	0.018056	91.3	271.57	11.07692	4.31	0.1	4.3	0.1	
t8	12:09:52	0.013611	92.2	271.43	11.16735	3.45	0.1	3.5	0.1	
t9	12:10:43	0.014167	93.7	271.61	11.29412	2.57	0.1	2.6	0.1	
$t 10$	12:11:41	0.016111	96.8	275.8	10.92414	1.69	0	1.7	0	
$t 11$	12:12:20	0.010833	102.6	280.37	11.26154	0.99	0	1	0	
$t 12$	12:13:03	0.011944	127.1	306.54	10.71628	0.32	0	0.3	0	

From Table 3.7, we found that the values of CPA are coincided.Despitesome differences among the values of TCPA, these are small enough to be ignored. These differences are caused by the round function of ARPA in the indication. This is proved that the formulas in part 2 are reliable in calculating CPA and TCPA for evaluating the risk of collision between 2 target vessel from VTS radar.

4. Conclusion

A new method to evaluate the risk of collision between two target ships from observation data measured by the shore station radar is introduced and the accuracy of calculation is confirmed. By using this method, we can develop and practice the applicationor tools to calculate CPA, TCPA between target ships quickly. Then, the risk of collision can be evaluated. It is very useful for VTS officers in managing traffic ships, to maintain the safety of navigation.

References

[1] Pham Van Thuan, Nguyen Viet Thanh (textbook),International regulations for preventing collisions at sea, 1972,Science and Technology Publishing House, Hanoi, 2012.
[2] IMO, International regulation for preventing collision at sea 1972and amendments.
[3] IALA Guideline 1068, Provision of a Navigational Assistance Service by Vessel Traffic Services.
[4] IALA Guideline 1070, VTS role in managing Restricted or Limited Access Areas.
[5] Pham Van Thuan, Xâydựnghệcôngthứctínhtoáncácthôngsốchuyểnđộngcủatàumụctiêutừkếtquảquansát (Building a system of formulas to calculate the target ship's motion parameters from the observation results), Marine Science and Technology, Vol 28, 2011.
[6] Pham
Van
Cuong
and
his group,Nghiêncứuxâydựngmôhìnhmôphỏngtránhđâmvatàuthuyềntrênbiểnđểcảnhbáo, trợgúptránhvatàuthuyềntrênbiểnápdụngchotàuthuyềnnhỏ (Research on building an aids to assisst detecting the risk of collision and warningfor small ships), 2012.
[7] Lenart, A.S.: Collision Threat Parameters for a new Radar Display and Plot Technique. J. Journal of Navigation 36, 404-410, 1983.
[8] Pedersen, E., Inoue, K., Masanori, T.: Simulator Studies on a Collision Avoidance Display that Facilitates Efficient and Precise Assessment of Evasive Maneuvers in Congested Waterways. J. The Royal Institute of Navigation 46, 411-427, 2003.
[9] Yuelin, Z.: Ships collision avoidance and watch keeping. Dalian Maritime University, Dalian, 2012

