
Minimizing makespan in a single batch machine using genetic algorithm

1539

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 7, July, 2021:1539 – 1547

Minimizing makespan in a single batch machine using genetic algorithm

Ho Jin Kaia, Yasothei Suppiahb, Ajitha Angusamyc, Goh Wei Weid, Noradzilah Ismaile

a,b,d,e Faculty of Engineering & Technology, Multimedia University, Malaysia
c Faculty of Business, Multimedia University, Malaysia

Abstract

This paper deals with a single batch machine scheduling problem to minimize makespan with the consideration

of sequence dependent setup time. As the problem is NP hard, a genetic algorithm is developedto provide a

solution to this problem. Furthermore, dispatching heuristics such as shortest processing time (SPT), longest

processing time (LPT), smallest job size (SJS) and largest job size (LJS) are developed to provide initial

solutions to the genetic algorithm. All the developed algorithms and simulation are done using Spyder (Python

3.8) software. Computational results show that the genetic algorithm has outperformed the dispatching heuristics

in minimizing the makespan.

Keywords: makespan, scheduling, genetic algorithm, dispatching heuristics

1. Introduction

Scheduling is a process of making decisions in a manufacturing environment with various restricted

constraints with the aim of achieving goals in an industry. Decisions made from solving the scheduling problem

are instrumental in accomplishing the tasks and goal of the industry. In recent years, the complexity in making

these decisions have increased tremendously due to very high production volumes, higher product portfolio

based on customers’ needs and higher pressure by the management to save on production and energy costs[8].

Besides that, efficient algorithms are the sought after tools to cope with these uncertainties in production.

Batch scheduling problems commonly appears in industrial processes, manufacturing and cellular assembly

systems [1]. Parallel batching is categorised as processing several jobs simultaneously on a processor in which

the processing time of a batch is the largest processing time of jobs in [5]. The parallel batching machine has the

characteristic of processing a group of jobs with the condition that the sum of job sizes in the batch should not

exceed the capacity of the machine. One of the most widely industrial application of parallel batch machine is in

electronic assemblies and burn in oven [6]. Since the batch parallel machines often leads to a bottleneck

situation, therefore efficient scheduling is of a great concern to maximize throughput [5] and [7].

A constraint programming that exploits a new optimization constraint to minimize maximal lateness for a

batch processing machine is presented in [10]. However, this method provides optimal solutions for small size

job instances only. Furthermore, developing exact algorithms for industrial sized problems remains a

challenging issue till date [11].

A genetic algorithm for jobs scheduling of non-similar sizes on a single-batch-processing system is used in

[2] to minimize makespan. They suggested two separate genetic algorithms based on various encoding schemes,

the first is a sequence-based GA, which uses GA operators to generate random work sequences and then

grouping the jobs. The second is a hybrid batch-based GA, which creates batches of jobs randomly using

crossover and mutation operations and ensures feasibility by relying on problem information through a heuristic

method. This batch-based hybrid GA is combined with a local search heuristic based on the problem

characteristics to direct the search to near optimal or optimal schedules.A hybrid genetic local search algorithm

was proposed in [3] for the unrelated parallel system scheduling problem with the aim of minimizing the

Ho Jin Kai, Yasothei Suppiah, Ajitha Angusamy, Goh Wei Wei, Noradzilah Ismail

1540

maximum completion time. They suggested a chromosome structure made up of arbitrary key numbers which

leads to very effective computational results in achieving the objective of the scheduling.

A genetic algorithm for the unrelated parallel machine scheduling problem [4], takes into account machine

and job sequence based setup times. A quick local search and a local search enhanced crossover operator are

included in the proposed genetic algorithm. After some calibrations, two versions of the algorithm are obtained

and are its performance are compared to the most widely used approaches in the literature. To carry out the

statistical experiments, they also establish a benchmark of small and large instances and conclude that the

proposed approach outperforms the other evaluated methods in a benchmark collection of instances after

conducting a numerical and statistical study.A single batch processing machine to minimize makespan is

considered in [9] where the machine’s capacity is represented by a two-dimensional rectangle and a job

occupies a rectangle of its dimension. They developed a biased random-key genetic algorithm together with

hybrid bin load algorithm. These algorithms have shown comparable results to the mixed integer programming

solver, CPLEX for moderate sized instances. On the other hand, the developed algorithms have outperformed

CPLEX on large size instances with a reasonable computational time.

This paper deals with a single batch machine scheduling problem to minimize makespan. The scheduling

problem in this paper is defined as following. There are N jobs which are categorised into F families according

to their job characteristics. Jobs belonging to same families will be grouped into batches where the total jobs

sizes in a batch does not exceed the capacity of the machine. Once a batch starts itsprocessing, it cannot be

interrupted and no jobs can be removed from or added into the batchits processing is completed. The processing

time (bp) of a batch is equivalent to the longest processing time of a job in that particular batch. A set-up time (

ijt) occurs whenever there is a switch in processing of batches from one family to a batch originating from

another family in the scheduling sequence. The makespan for the sequence of batches are calculated by

addingup the processing time of the batches and the setup times.

2. Methodology

In this paper, we have developed four dispatching heuristics which are SPT, LPT, SJS, LJS and a

metaheuristic, genetic algorithm to solve the scheduling problem. All data simulation and the heuristics are

developed using Spyder (Python 3.8).

Development of Dispatch Heuristics

● SPT:Jobs are sequenced as according to the increasing order of their processing time.

● LPT: Jobs are sequenced as according to the decreasing order of their processing time.

● SJS: Jobs are sequenced as according to the increasing order of their job size.

● LJS: Jobs are sequenced as according to the decreasing order of their job size.

For every dispatch heuristic, once the jobs are sequenced according to their priority rules, jobs from the same

family are grouped into batches. The total job size of the batch cannot exceed the capacity of the machine. The

total completion time of the final schedule of batchesare calculated for each of the dispatch heuristic takes into

consideration of the processing time and the sequence dependent setup time whenever there is a change of

batches from one family to another in their respective sequence.

Development of Genetic Algorithm

Genetic Algorithm adopts the concept of biological evaluation theory whereby offspringchromosomes are

created at every iteration from parent chromosomes. Furthermore, the genetic algorithm also fosters the

principal of survival of the fitness whereby chromosomes that contributes the least to the objective function will

be left to die. As the genetic algorithm requires initial population to start off its algorithm, it has been a common

approach to generate initial population either from random instances or from other heuristics. Here, we have

adopted four dispatch heuristics which are SPT, LPT, SJS and LJS to generate initial population for the genetic

algorithm. As the population size of the genetic algorithm has been fixed before starting the genetic algorithm,

only the chromosome with good fitness will be selected to reproduce new offspring in every iteration. Each job

can be viewed as a gene in a chromosome and each sequence of scheduled jobs can be viewed as a chromosome.

Every chromosome has its own fitness function as it is measured by the objective function of the problem which

is the total completion time in our case. The fitness function helps in determining the quality of the

chromosome. At every iteration, once the parents are chosen from the population, new chromosomes

(children)are born after applying operators such as crossover and mutation to the parent chromosome. In this

paper, a position based crossover genetic operator is used. Based on the random number generated, a set of

Minimizing makespan in a single batch machine using genetic algorithm

1541

genes that equals to the random number is copied from the first parent to the child chromosome. The rest of the

genes which are not in the child chromosome yet, follow the sequence that appear in parent 2. Another child is

created by using the mutation operator by swapping the position of two random genes of the child chromosome

from the crossover operation.As every new chromosome are created, they are evaluated on based on their fitness

function. They too become the part of the growing population. If the population of chromosomes exceeds the

number of maximum populations, then the chromosomes with the least fitness will be left to die in order to

make room for the new chromosomes that are stronger.The genetic algorithm stops when the stopping criteria is

met usually when a maximum number of iterations is reached.

Step 1: Initial population of chromosomes is generated using the outcomes of the job sequences and the

makespan values of the dispatching heuristics SPT, LPT, SJS and LJS. Set the maximum number of population

and maximum number of iterations (termination condition).

Step 2: Parents chromosomes are chosen by selecting any 2 chromosomes from population.

Step 3:Position based crossover genetic operators are applied to generate a child. The front part of the genes

in parent 1 iscopied to the front part of the child chromosome. The number of genes chosen to be copied is

based on the random number generated which is less than the number of jobs in the parent chromosome. The

rest of the genes in child chromosome are arranged according to the sequence of these genes that appear in

parent 2.

Step 4:Another child chromosome is generated by applying mutation genetic operators. Two genes are

chosen randomly and their positions are swapped in the child chromosome from step 3

Step 4:For every child chromosome generated from steps 3 and 4, group the jobs from the same family into

batches and the total job size of a batch cannot exceed the capacity of the machine.

Step 5:Evaluate the makespan(fitness value) of all the children chromosomes and insert them into the

population if the population size has not reach maximum number of population.

Step 6: If the population of chromosomes exceeds the number of maximum populations, then delete the

chromosome with the least fitness to make room for the new chromosomes.

Step 7: If the maximum number of iterations is satisfied then stop and return the best chromosome with the

list of jobs in every batch and its makespan value; otherwise, go to Step 2.

Ho Jin Kai, Yasothei Suppiah, Ajitha Angusamy, Goh Wei Wei, Noradzilah Ismail

1542

Figure 2: Screenshot of python program for the genetic algorithm

3. Results and Discussion

Random data which are extracted from literature [1] is generated for the job parameters to test the

effectiveness of the genetic algorithm performance in minimizing the makespan of the scheduling problem

presented in this paper. All the random instances, developed heuristics and the simulation experiments are run

using the Spyder (Python 3.8). The data for 25 jobs and the parameters used are shown in Table 1.

Minimizing makespan in a single batch machine using genetic algorithm

1543

Table 1: Random instances for 25 jobs

Based on Table 1, 5 sets of instances have been generated. The makespan values are recorded for each of the

heuristics. As for the genetic algorithm, there are 5 types of genetic algorithm was tested in terms of the

maximum iteration for the stopping criteria. GA(1000) is where the stopping criteria of the algorithm is set to

1000 iterations, The stopping criteria for GA(2000), GA(3000) ,GA(4000) and GA(5000) is set at 2000

iterations, 3000 iterations, 4000 iterations and 5000 iterations respectively. For the dispatch heuristics SPT,

LPT, SJS and LJS, each of the 5 instances are run once and the total completion time is recorded. However, for

each type of the genetic algorithm, each instances are run 5 times and the average of the makespan is recorded.

This is because the genetic algorithm has features of crossover and mutation which results in different

combinations of chromosomes at every iteration. The value of the makespan can be observed at Table 2 for all

the 5 sets of instances.

Table 2: Makespan values for heuristics

 SPT LPT SJS LJS GA(1000) GA(2000) GA(3000) GA(4000) GA(5000)

Instance

1

1056 1097 1211 1266 800 792 774 702 704

Instance

2

1202 1209 1445 1273 755 839 755 741 816

Instance

3

1296 1415 1419 1625 890 897 824 853 568

Instance

4

1545 1432 1431 1473 820 756 856 798 755

Instance

5

1389 1606 1687 1659 786 754 783 692 792

Average 1297.6 1351.8 1438.6 1459.2 810.2 807.6 798.4 757.2 727

It can be seen from Table 2, the genetic algorithm produces better results for the makespan values for all the

5 instances. The last row at Table 2 shows the average performance of each of the heuristics. Among the

dispatching heuristics, SPT tends to show the best performance and the performance of the genetic algorithm

improves as more iterations are used as the stopping criteria. The average of the 5 instances are shown clearly in

Figure 3.

Ho Jin Kai, Yasothei Suppiah, Ajitha Angusamy, Goh Wei Wei, Noradzilah Ismail

1544

Figure 3: Average of the completion time (makespan value) for 25 jobs

Since each type of genetic algorithm is run for 5 times for each instances, the best makespan value

(minimum value) from the 5 runs are recorded for each instances at Table 3. Hence, the last row provides the

average of the 5 values recorded for each type of the genetic algorithm.

Table 3: Best objective function value for each type of GA for each instances

Average of

the best

makespan value

in 5 runs

GA(1000) GA(2000) GA(3000) GA(4000) GA(5000)

Instance 1 795 776 752 690 694

Instance 2 745 825 743 728 799

Instance 3 876 884 803 843 554

Instance 4 806 738 835 785 743

Instance 5 774 732 769 692 779

Average 799.2 791 780.4 747.6 713.8

In order to study how much of improvement made by the genetic algorithm in terms of the total completion

time with respect to each of the dispatching heuristics, we have calculated the percentage of improvement (I)

by using the formula below:

%100

5

55
5

1

5

1

5

1

−

=

=

==

n

T

n

T

n

T

dhn

GAndhn

C

CC

I

=
dhnTC makespan value of dispatching heuristic for instance n

=
GAnTC average makespan value of genetic algorithm for instance n

Table 4 provides the percentage of improvement of each type of the genetic algorithm from each of the

dispatch heuristics. In general, the genetic algorithm has improved the performance of the dispatching heuristics

in terms of the makespan values in between the range of 37.56% to 50.18%.

Minimizing makespan in a single batch machine using genetic algorithm

1545

Table 4: Percentage of improvement of each type of genetic algorithm

Percentage of

improvement of

each type of GA

compared to

dispatching

heuristics

 Dispatching heuristics

SPT

LPT

SJS

LJS

GA(1000) 37.56 40.07 43.68 44.48

GA(2000) 37.76 40.26 43.86 44.65

GA(3000) 38.47 40.94 44.50 45.29

GA(4000) 41.65 43.99 47.37 48.11

GA(5000) 43.97 46.22 49.46 50.18

In terms of the computational time taken to produce the output for each of the heuristics, the dispatching

heuristics are the fastest. Therefore, we have recorded the computational time for the genetic algorithm as it has

more complex features in its algorithm and various stopping criteria. Figure 4 provides the average

computational time taken by each type of the genetic algorithm. It can be seen that as the number of iterations

increases the time taken to produce results also increases.

Figure 4: Average computational time by each of the genetic algorithm

Similar experiments are carried for 50 jobs in which all parameters used for jobs and machines are the same

as in Table 1 except that there are now 10 jobs in each family.

Ho Jin Kai, Yasothei Suppiah, Ajitha Angusamy, Goh Wei Wei, Noradzilah Ismail

1546

Figure 5: Average of the completion time (makespan value) for 50 jobs

Figure 5 provides the average makespan value out of the 5 instances for each of the heuristics for the case of

50 jobs. SPT shows the best results among all the dispatching heuristics whereas LJS shows the worst results.

All types of genetic algorithm show improvement to the dispatching heuristics and the performance of the

genetic algorithm improves as more iterations are being used in its structure.

Similar to the earlier explanation on Table 3, each type of genetic algorithm is run for 5 times for each

instances, the best makespan value (minimum value) from the 5 runs are recorded for each instances at Table 5.

Hence, the last row provides the average of the 5 values recorded for each type of the genetic algorithm.

Table 5: Best objective function value for each type of GA for each instances

Average of

the best

makespan value

in 5 runs

GA(1000) GA(2000) GA(3000) GA(4000) GA(5000)

Instance 1 1884 1907 1635 1328 1295

Instance 2 1819 1674 1738 1650 1569

Instance 3 1891 1866 1839 1737 1657

Instance 4 1836 1817 1793 1752 1684

Instance 5 1894 1879 1859 1755 1680

Average 1864.8 1828.6 1772.8 1644.4 1577

Futhermore, the genetic algorithm have improved the results compared to the dispatching heuristics in the

range of 25.26% to 37.30% for the case of 50 jobs. However the average computational time (in seconds) taken

to produce the final results are 7.05s, 14.06s, 20.33s, 27.36s and 33,69s for GA(1000), GA(2000), GA(3000),

GA(4000) and GA(5000) respectively. The time taken are longer compared to the case of 25 jobs as more jobs

require more computational time to produce the solution.

4. Conclusion

This paper provides a solution for the single batch machine scheduling problem with the consideration of

sequence dependent setup time. The objective of this paper is to provide a good schedule that minimises the

makespan for a single batch machine scheduling problem. Since the problem in NP hard, a metaheuristic genetic

algorithm is developed in this paper to find a near optimal solution. There are four dispatching heuristics

developed in this paper to be used as an initial population for the genetic algorithm. The result obtained from the

genetic algorithm has been compared with the results from the dispatching heuristic methods in terms of the

makespan value. Based from the experiments outcome, the genetic algorithm is able to produce a good

Minimizing makespan in a single batch machine using genetic algorithm

1547

improvement within a reasonable time compared with the dispatching heuristics. This study could be extended

to other scheduling environments such as parallel machines, flow shops or jobs shops as a future direction.

References

[1] TsiuShuang Chen, Lei Long and Richard Y.K. Fung, “A Genetic Algorithm for the Batch Scheduling

with Sequence-Dependent Setup Times”, 2006. Available: https://sci-

hub.st/https://link.springer.com/chapter/10.1007/978-3-540-37258-5_147

[2] A. H. Kashan, B. Karimi and F. Jolai, “Effective hybrid genetic algorithm for minimizing makespan on

a single-batch-processing machine with non-identical job sizes”, 2005. Available: https://sci-

hub.st/https://www.tandfonline.com/doi/abs/10.1080/00207540500525254

[3] Duygu Yilmaz Eroglu, H. Cenk Ozmutlu and Seda Ozmutlu, “Genetic algorithm with local search for

the unrelated parallel machine scheduling problem with sequence-dependent set-up times”, 2014.

Available: https://sci-hub.st/https://www.tandfonline.com/doi/abs/10.1080/00207543.2014.920966

[4] Eva Vallada and Rubén Ruiz, “A genetic algorithm for the unrelated parallel machine scheduling

problem with sequence dependent setup times”, 2011. Available: https://sci-

hub.st/https://www.sciencedirect.com/science/article/pii/S0377221711000142

[5] Rui, X., Huaping, Ch., and Xueping, Li. (2012). Makespan minimization on single batch-processing

machine via ant colony optimization. Computers & Operations Research, 39(3), 582-593.

[6] Dauzère-Pérès, S., and Mönch, L. (2013). Scheduling jobson a single batch processing machine

withincompatible job families and weighted number oftardy jobs objective. Computers&

OperationsResearch, 40(5), 1224-1233

[7] Rocholl, J., Mönch, L. & Fowler, J. Bi-criteria parallel batch machine scheduling to minimize total

weighted tardiness and electricity cost. J Bus Econ90, 1345–1381 (2020).

https://doi.org/10.1007/s11573-020-00970-6

[8] .Lennart Merkert and Iiro Harjunkoski and Alf Isaksson and Simo Säynevirta and Antti Saarela and

Guido Sand.Scheduling and energy – Industrial challenges and opportunities.Computers & Chemical

Engineering,72,183-198, 2015.

[9] Xueping Li, Kaike Zhang. Single batch processing machine scheduling with two-dimensional

binpacking constraints.International Journal of Production Economics,196, 113-121, 2018.

[10] . Arnaud Malapert, Christelle Guéret, Louis-Martin Rousseau.A constraint programming approach for a

batch processing problem with non-identical job sizes. European Journal of Operational Research, 221,

533-545, 2012.

[11] Shaoxiang Zheng and Naiming Xie and Qiao Wu. Single batch machine scheduling with dual setup

times for autoclave molding manufacturing.Computers & Operations Research,133,105381, 2021.

