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Abstract 

Generalized solution of linearized Boussinesq equation is derived to approximate the nature of ground water 

flow due to changes in water levels in two ditches bounding an unconfined aquifer. In this research a 

mathematical model is developed for two flows. In the first case, a sudden change in the water level occurs in 

the two bounding ditches simultaneously, while in the second case, a sudden change in water level in one ditch 

is followed by a gradual rise in water level in the other ditch. 

Closed form analytical solutions are obtained for the two cases by solving governing equations using eigen 

value eigen function method. A numerical example problem is presented in which head values are computed at 

various places in the aquifer at given time intervals and the results plotted. 
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List of symbols 

D = Average saturated depth of the aquifer 

H = Dimensionless water head 

h(x, t) = Water head height measured from sloping bed 

hd = Initial water levels in the drain 

h0 = Water levels in the drain at x=0 

hL = Water levels in the drain at x=L 

ℎ̂ (x, t) = Variable water head height measured from horizontal datum 

K = Hydraulic conductivity 

L = Lateral extant of the unconfined aquifer 

q = Flow rate per unit area of the aquifer 

S = Specific yield 

t = Time 

x = Horizontal x axis (space coordinate) 

𝛽 = Sloping angle measured in radian 

 𝛼 =  
𝐿 𝑡𝑎𝑛 𝛽

2𝐷
  

𝜏 = Dimensionless time 
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Introduction 

Groundwater level fluctuations in an aquifer can result from surface filtration or changes in ditch water 

levels. Managing of this limited water resources has been a challenging task. Ditch water level changes can be 

due to rapid flooding of stream channels during storm periods or sudden release of water from remote sources in 

the aquifer. On the other hand, field activities involving pumping operations can lead to rapid pressure build up 

in canals and ditches to affect the nature of flow in the adjoining aquifer. For instance, if the ditch water level 

changes abruptly a similar situation can be expected to arise in the aquifer. A gradual rise in the ditch water 

level on the other hand would be accompanied by a much slower movement in the ground water table than in 

former case. In this context, mathematical model has been considered as a successful tool to determine and 

conduct this study. 

The actual pattern of the groundwater level changes in the aquifer, is of great interest to hydrologists and 

irrigation engineers engaged in the design of drainage ditches for controlling high water table build up.  

Many researchers Hantush (1962a, 1962b), Spiegel (1967), Glover (1974), Gill (1984) have studied the 

nature of flow in confined and unconfined aquifer due to sudden changes in the channel water levels. 

The case of water table fluctuation in unconfined aquifers resulting from surface infiltration were also treated 

in earlier studies by Maasland (1959), Huntush (1967), Marino (1974), Mustafa (1987), (1987) and Rai and 

Mangalik (1999). Although these studies provide useful information about groundwater flow system, but 

subsurface drainage over hillslope were not satisfactorily explained with these results. To be precise in none of 

these studies, however, was the case of slow or gradual change in water level in the ditches bordering an aquifer 

treated was discussed.  

In such cases approximation of the groundwater flow based on the assumptions that the streamlines are 

nearly parallel to the sloping bed (Dupuit-Forchheimer assumption) yields more accurate results. Analytic 

solutions of linearized Boussinesq equation under varying hydrologic conditions are presented by various 

investigators Upadhyay and Chauhan (2001), Bansal and Das (2015). 

In the current research, a problem leading to a practical situation in the field is considered where the ditch 

water level in one of the ditches in unconfined aquifer bordering an aquifer changes gradually from a certain 

initial level to a fixed level. Such a change can result from pumping operations during ditch drainage where the 

water level is initially controlled, for instance by pump action and later by flow system when the flow is fully 

developed in the aquifer. 

In this research two flow cases are considered. Firstly, a situation in which the water level in two ditches 

change suddenly is investigated. In the second case water level in one ditch rises suddenly while in the other 

rises gradually. The resulting solution is then obtained and compared in a sloping aquifer and cases of no slope. 

Mathematical formulation 

 

Fig 1. Schematic representation of flow in unconfined aquifer due to rapid and slow changes in ditch water 

level 
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R. K. Bansal (2015) studied an unconfined aquifer of lateral extent L overlaying an impermeable bed with an 

upward slope tan 𝛽 . With Dupuit-Forchheimer assumptions that the streamline is nearly parallel to the sloping 

impervious bed, the discharge rate per unit width of the aquifer along x axis can be approximated by following 

relation Chapman (1980): 

 𝑞 = −𝐾ℎ 𝑐𝑜𝑠2𝛽
𝜕

𝜕𝑥
ℎ̂         (1) 

where ℎ̂ is the variable water head height measured in vertical direction from horizontal datum and h(x,t) is 

the water head height measured in the vertical direction from the impermeable sloping bed. K is the hydraulic 

conductivity, tan 𝛽 is the bed slope, t = time and x = space coordinate. Applying the principle of mass balance 

across a vertical slice, the equation of subsurface seepage flow over sloping bed is given by: 

𝜕𝑞

𝜕𝑥
+ 𝑆 

𝜕

𝜕𝑥
ℎ̂ = 0          (2) 

where S is the specific yield of the aquifer. If the spatial variations in K and S are neglected, then eqns. (1) 

and (2) imply that  

𝐾𝑐𝑜𝑠2𝛽 
𝜕

𝜕𝑥
{ℎ 

𝜕

𝜕𝑥
ℎ̂} = 𝑆  

𝜕ℎ̂

𝜕𝑡
        (3) 

Since ℎ̂ = ℎ + 𝑥 𝑡𝑎𝑛 𝛽 after rearranging eqns. (1) and (3) can be written as, 

𝑞 = −𝐾ℎ 𝑐𝑜𝑠2𝛽 {
𝜕ℎ

𝜕𝑥
+ 𝑡𝑎𝑛 𝛽 }        (4) 

𝐾𝑐𝑜𝑠2𝛽 {
𝜕

𝜕𝑥
(ℎ 

𝜕ℎ

𝜕𝑥
) + 𝑡𝑎𝑛 𝛽 (

𝜕ℎ

𝜕𝑥
)}  = 𝑆 

𝜕ℎ

𝜕𝑡
      (5) 

The problem under treatment is illustrated in Fig 1 showing an unconfined aquifer bounded by two ditches 

spaced L apart. The water levels in two ditches were the same initially at hd, the datum level.  

In the first case, water was suddenly released into both ditches at the same time giving rise to new water 

level h0 and hL in the left hand and right-hand ditches respectively. 

In the second case, the rise in water level in the right-hand ditch was gradual while in the left-hand ditch was 

rapid. Solution of the two cases are sought as follows: 

Case I: Sudden Change in ditch water level 

Taking the left-hand ditch as the origin with the coordinate system as shown in Fig 1, solution to equation is 

sought subject to the following initial and boundary conditions: 

ℎ(𝑥, 0)  =  ℎ𝑑 , 𝑡 ≤ 0          (6a) 

ℎ(0, 𝑡)  = ℎ0, 𝑡 > 0          (6b) 

ℎ(𝐿, 𝑡)  = ℎ𝐿 , 𝑡 > 0          (6c) 

Eqn. (5) is a second order parabolic partial differential equation, analytic solution of which is not tractable. 

However approximate analytic solutions can be obtained by taming the non-linearity around some mean 

saturated depth D. Rewriting eqn. (5) as 

 
𝜕2ℎ

𝜕𝑥2  +
𝑡𝑎𝑛 𝛽

 𝐷

𝜕ℎ

𝜕𝑥
  =

𝑆

𝐾 𝐷 𝑐𝑜𝑠2𝛽 
 

𝜕ℎ

𝜕𝑡
, 0 ≤  𝑥 ≤ 𝐿      (7) 

In fact, this technique invokes linearization of the flow rate q around D, given by 

     𝑞 = −𝐾 𝑐𝑜𝑠2𝛽 {𝐷
𝜕ℎ

𝜕𝑥
+ ℎ 𝑡𝑎𝑛 𝛽 }      (8) 
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The average saturated depth D of the aquifer is approximated using an iterative formula 𝐷 =
ℎ0+ ℎ𝑡 

2
, where 

ℎ0 is the initial water table height and ℎ𝑡 is the varying water table height at time t, at the end of which D is 

approximated Marino (1974).  

Applying following dimensionless variables  

𝐻 =
ℎ(𝑥, 𝑡) − ℎ𝑑

𝐿
;  𝑋 =

𝑥

𝐿
;  𝜏 =

𝐾𝐷𝑐𝑜𝑠2𝛽

𝑆𝐿2
𝑡;  𝛼 =

𝐿 𝑡𝑎𝑛𝛽

2𝐷
 

Equation (5) can written as  

𝜕2𝐻

𝜕𝑋2 + 2𝛼 
𝜕 𝐻

𝜕𝑋
=  

𝜕𝐻

𝜕𝜏
          (9) 

The corresponding initial and boundary conditions become 

𝐻(𝑋, 𝜏 =  0)  =  0 ;  0 <  𝑥 < 𝐿        (10) 

𝐻(0, 𝜏 ) =  
ℎ0−ℎ𝑑

𝐿
;    𝜏 > 0         (11) 

𝐻(𝐿, 𝜏 ) =  
ℎ𝐿−ℎ𝑑

𝐿
 ;    𝜏 > 0         (12) 

The solution to this boundary value problem is given as: 

𝐻(𝑋, 𝜏)  =  
1

𝐿(𝑒−2𝐿𝛼−1)
(2𝐿(𝑒−2𝐿𝛼 − 1)(∑ (−

1

𝐿(𝐿2𝛼2+𝑛2𝜋2)
(((−1)𝑛(−ℎ𝐿 + ℎ0)𝑒𝐿𝛼 − ℎ0 +∞

𝑛=0

ℎ𝑑)𝜋 𝑠𝑖𝑛(
𝜋𝑋𝑛

𝐿
)(𝑐𝑜𝑠ℎ(𝑋𝛼) − 𝑠𝑖𝑛ℎ(𝑋𝛼))(−𝑠𝑖𝑛ℎ(

(𝐿2𝛼2+𝑛2𝜋2)𝜏

𝐿2 ) + 𝑐𝑜𝑠ℎ(
(𝐿2𝛼2+𝑛2𝜋2)𝜏

𝐿2 ))𝑛))) + (ℎ𝑑 − ℎ0)𝑒−2𝐿𝛼 +

(−ℎ𝑑 + ℎ𝐿)𝑒−2𝑋𝛼 + ℎ0 − ℎ𝐿)           

  (13) 

The above equation can be approximated as below 

𝐻(𝑋, 𝜏)  =  2(∑ (−
1

𝐿(𝐿2𝛼2+𝑛2𝜋2)
(((−1)𝑛(−ℎ𝐿 + ℎ0)(1 + 𝐿𝛼) − ℎ0 + ℎ𝑑)𝜋 𝑠𝑖𝑛(

𝜋𝑋𝑛

𝐿
)(𝑐𝑜𝑠ℎ(𝑋𝛼∞

𝑛=0 ) −

𝑠𝑖𝑛ℎ(𝑋𝛼))(−𝑠𝑖𝑛ℎ(
(𝐿2𝛼2+𝑛2𝜋2)𝜏

𝐿2 ) + 𝑐𝑜𝑠ℎ(
(𝐿2𝛼2+𝑛2𝜋2)𝜏

𝐿2 ))𝑛))) + (ℎ𝑑 − ℎ0)(1 − 2𝐿𝛼) + (−ℎ𝑑 + ℎ𝐿)(1 −

2𝑋𝛼) + ℎ0 − ℎ𝐿)           (14) 

In a specific case of an analytical solution, if the impermeable barrier is horizontal 𝐻(𝑋, 𝜏)  can be obtained 

from eqn. (13) by substituting  𝛽 = 0 that implies 𝛼 =
𝐿 𝑡𝑎𝑛𝛽

2𝐷
= 0 ℎ𝑒𝑛𝑐𝑒  𝑡𝑎𝑛 𝛽 = 0. So, above equation takes 

the form, 

𝐻(𝑋, 𝜏)  =  2(∑ −
1

𝑛𝜋𝐿

∞
𝑛=0 𝑠𝑖𝑛(

𝜋𝑋𝑛

𝐿
)((−1)𝑛(−ℎ𝐿 + ℎ0) − ℎ0 + ℎ𝑑)(−𝑠𝑖𝑛ℎ(

𝑛2𝜋2𝜏

𝐿2 ) + 𝑐𝑜𝑠ℎ(
𝑛2𝜋2𝜏

𝐿2 )) + ℎ𝐿 

           (15) 

Steady State Solution 

Steady state solution for eqn. (13) can be obtained by substituting 
𝜕𝐻

𝜕𝜏
= 0 on the right side. The solution of 

the equation for the boundary conditions in eqns.  (10), (11) and (12) is obtained as, 

𝐻(𝑋, 𝜏)  =  
(ℎ𝑑−ℎ0)𝑒−2𝐿𝛼+(−ℎ𝑑+ℎ𝐿)𝑒−2𝑋𝛼+ℎ0−ℎ𝐿

𝐿(𝑒−2𝐿𝛼−1)
       (16) 

For horizontal aquifer, a steady state solution can be obtained from eqn. (16) after expanding the exponential 

terms 𝑒−2𝛼 𝐿 and 𝑒−2𝛼 𝑥 in the series form. After, neglecting the greater than 2nd order term and putting 𝛽 = 0, 

above eqn. reduces to  

𝐻(𝑋, 𝜏)  =  
(ℎ0−ℎ𝐿)

𝐿
          (17) 
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Case II: Gradual Buildup of ditch water level 

Taking the left-hand ditch as the origin with the coordinate system as shown in Fig 1, solution to equation is 

sought subject to the following initial and boundary conditions: 

ℎ(𝑥, 0)  =  ℎ𝑑 , 𝑡 ≤ 0          (18a) 

ℎ(0, 𝑡)  = ℎ0, 𝑡 > 0          (18b) 

ℎ(𝐿, 𝑡)  = ℎ𝐿(1 − 𝑒𝛾2𝑡) 𝑒𝑟𝑓𝑐(𝛾√𝑡), 𝑡 > 0       (18c) 

Result and discussion 

For fixed value of t =1, 2, 3, 4 and 5 days the heads were calculated at distances x = 0 m, x = 10 m, x = 100 

m, x = 1000 m. ℎ0 = 70 m, ℎ𝐿 = 50 m,
𝐾

𝑆
 =  12,000 𝑚2/𝑑𝑎𝑦, 𝐷 = 60𝑚. The results were plotted as shown in 

the figure below. 

 

 

Graph 1. Variation in height of water level with time in days for 𝛽 = −10 for rapid water flow. 

 

 

Graph 2. Variation in height of water level with time in days for 𝛽 = 0 for rapid water flow. 
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Graph 3. Variation in height of water level with time in days for 𝛽 = 10 for rapid water flow. 

 

Case II: For fixed value of t =1, 2, 3, 4 and 5 days the heads were calculated at distances x = 0 m, x = 10 m, 

x = 100 m, x = 1000 m. ℎ0 = 70 m, ℎ𝐿 = ℎ𝐿(1 − 𝑒𝛾2𝑡) 𝑒𝑟𝑓𝑐(𝛾√𝑡), 𝑡 > 0 m,
𝐾

𝑆
 =  12,000 𝑚2/𝑑𝑎𝑦, 𝐷 =

60𝑚. With the gradual build-up of the water level we have a delay factor given by, 𝛾 = 0.5/(𝑑𝑎𝑦)
1

2⁄ . The 

results were plotted as shown in the figure below. 

 

Graph 4. Variation in height of water level with time in days for 𝛽 = 10 for gradual water flow. 

 

 

Graph 5. Variation in height of water level with time in days for 𝛽 = 0 for gradual water flow. 
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Conclusion 

The head build up is quite fast due to rapid flow of water for the first case with the water profile shown in the 

figures. Graphs 1 and 3 represents a sloping aquifer. The water level goes down as the water percolates through 

the surface and after reaching the saturation level it becomes stable as shown in graphs 1 and 3. Whereas in 

graph 2, with 0 slope, the water gets absorbed and attains stability. 

 The water profile shown for case II in graph 4 with the sloping aquifer shows that the water level goes down 

as the water percolates through the surface and after reaching the saturation level it becomes stable. The water 

level in case II has percolated less as compared to case I as shown in the graphs 1 and 4. Whereas in graph 4, the 

water gets absorbed and attains stability. 

Groundwater level fluctuation in a finite unconfined aquifer resulting from water level changes were 

investigated in this research. The results were considered for two cases where in the first case we discussed the 

sudden change in the water level whereas in the second case gradual change of the water level is discussed. The 

results were discussed for sloping and parallel aquifer and were found in agreement with the results obtained by 

Mustafa (1987) for a confined aquifer. 
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