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Abstract 

Consider the first order nonlinear delay differential equation with several arguments of the form 

1

'( ) ( ) ( ( ( ))) 0
m

k k k

k

u t q t f u t
=

+ = ,  
0 0t t  , 

where the functions 0,( ), ( ) ([ ), ), ( )k k kq t t C t R t t     for 
0t t  and lim ( )k

t
t

→
=  for 1 k m  .  

Criterion involving limsup and liminf for the oscillation of all solutions of the above equation is 

obtained.  An example illustrating the results is given. 

Keywords: non monotone, nonincreasing, several deviating arguments, delay differential equation. 

1.Introduction 

This paper deals with the oscillatory behavior of  solution of the first order nonlinear delay differential 

equation of the form 

1

'( ) ( ) ( ( ( ))) 0
m

k k k

k

u t q t f u t
=

+ = ,  
0 0t t  ,                      (1.1) 

where the functions 0,( ), ( ) ([ ), )k kq t t C t R    for every 1,2,...,k m=  and ( )k t are non-monotone 

or nondecreasing such that  

( )k t t   for  0t t and lim ( )k
t

t
→

=  for 1 k m                          (1.2) 

and 

 ( , )kf C R R  such that ( ) 0kuf u   for 0u   for 1 k m  .                      (1.3) 
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In addition, we consider the intial condition for (1.1) 

( ) ( ),u t t= 0,t   where ( ) : ( ,0]t R − →                          (1.4) 

is a bounded Borel measurable function. 

A solution ( )u t of (1.1), (1.4) is an absolutely continuous function on 
0[ , )t  satisfying (1.1) for all 

0t  and (1.4) for all 0t  . 

A solution ( )u t  of (1.1) is oscillatory if it has arbitrary large zeroes. If there exists an eventually 

positive or an eventually negative solution, the equation is non-oscillatory. An equation is oscillatory 

if all its solutions are oscillatory. 

In the special case for 1m = , (1.1) reduces to  

'( ) ( ) ( ( ( ))) 0u t q t f u t+ =   
0 0t t  .          (1.5) 

Recently, there has been a considerable interest in the study of the oscillatory behavior of the 

following special form of (1.1) 

'( ) ( ) ( ( )) 0u t q t u t+ = ,   
0t t . 

In 1987, Ladde, Lakshmikantham and Zhang  considered  (1-5) with ,f q and   satisfy the following 

conditions:  

i) ( )t t   for  
0t t and lim ( )

t
t

→
=   and  ( )t  is  strictly increasing on R+, 

ii) ( )q t  are locally integrable and ( ) 0q t  ,  

iii) ( , )f C R R and ( ) 0uf u   for 0u   and 
0

lim
( )u

u
P

f u→
=   . 

They proved that if  

( )

limsup ( )

t

t
t

q s ds P


→

  

or 

( )

liminf ( )

t

t
t

P
q s ds

e


→
 , 

then all solutions of (1.5) are oscillatory. 

In 2011, Braverman and Karpuz,[3]  considered the linear differential equation 

'( ) ( ) ( ( )) 0u t q t u t+ = , 0t t ,                                     (1.6) 

where q is a function of non-negative real numbers and ( )t  is a non-monotone of positive real 

numbers such that ( )t t   for  0t t  and lim ( )
t

t
→

=  . They proved that if  
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( )

( ) ( )

limsup ( )exp ( ) 1

st

t
t s

p s p d ds



 

 
→

  
 

  
   

where ( ) sup ( )
s t

t s 


= , 0t  , then all solution of (1.6)  oscillate. 

In 2017, Ocalan [11] proved that the following result: Suppose that ( )t  is not necessarily monotone, 

( ) sup ( )
s t

t s 


= , 
0t t and 

0
lim

( )u

u
P

f u→
= , 0 p   . If  

  

( )

liminf ( )

t

t
t

P
q s ds

e


→
 , where 0 P   

or 

( )

limsup ( ) 2

t

t
t

q s ds P


→

 , where 0 P  , 

then all solutions of (1.5) are oscillatory. 

Theorem 1.1[7] 

Assume that 
kf , 

kq and 
k  in (1.1) satisfy the following conditions: 

i) The condition (1.2) holds and let ( )k t  be strictly increasing on R+, 

ii) ( )kq t (1 )k m   are locally integrable and ( ) 0kq t  , 

iii) The condition (1.3) holds and let (1 )kf k m   are nondecreasing functions and 

0
lim

( )
k

u
k

u
P

f u→
=   .  

If 
k are nondecreasing functions for 1 k m  , and   

1( )

liminf ( )

t m

k
t

kt

P
q s ds

e


→
=

  

or 

  
1( )

limsup ( )

t m

k
t kt

q s ds P


→ =

 , 

where 
1

max k
k m

P P
 

=  and 
1

*( ) max ( )k
k m

t t 
 

= , then every solution of (1.1) is oscillatory. 
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Theorem 1.2[7] 

 Consider the following equation with several arguments of the type 

1

'( ) ( ) ( ( ( ))) 0
m

k

k

u t q t f u t
=

+ =              (1.7) 

where ( )q t  and ( )k t  are continuous on [ , )a  , nondecreasing and lim ( )k
t

t
→

=  for 1 k m  . 

Suppose that 
1 2( , ,..., )mf u u u is a continuous function on 

nR  such that  

  
1 1 2( , ,..., )mu f u u u >0 and 

1 0mu u   

and  

  

1

1

0 1 2

...
limsup

( , ,..., )

m

k

m

u m

u u
P

f u u u

 

→

=    

for some nonnegative constants 
k , 1 k m  , with 

1

m

k

k


=

 =1. If there is a continuous 

nondecreasing function ( ) *( )k t t t   for t a , 1 k m   and 

  
1( )

liminf ( )

t m

k
t

kt

P
q s ds

e


→
=

 , 

then (1.7) is oscillatory. 

The purpose of this paper is to find a new condition for all solutions of (1.1) to be oscillatory when the 

arguments are not necessarily monotone. 

2. Main Results 

In this section, we derive new sufficient oscillation conditions, involving limsup and liminf for all 

solutions of (1.1) under the assumption that ( )t  is non-monotone function. Set 

  
0

( ) sup ( )k k
t s t

t s 
 

= ,  
0 0t t                               (2.1) 

and  

  
1

( ) max ( )k
k m

t s 
 

= .                             (2.2) 

Clearly ( )k t , ( )t  are nondecreasing and ( ) ( ) ( )k kt t t t      for all  
0 0t t  . 

Suppose that the function ( )u t  in (1.1) satisfies the following condition 

  limsup ,
( )

k
u k

u
P

f u→

=  0 kP  .                (2.3) 



Oscillation criterian of first order nonlinear delay differential equation with several deviating 

arguments. 

 

3008 

Gr𝒐̈nwall inequality   

 Consider the inequality 

'( ) ( ) ( ) 0u t q t u t+  ,   
0t t ,                                                                                       (2.4) 

where ( ) 0q t  and ( ) 0u t  . Then we have 

( ) ( ) exp{ ( ) }

t

s

u s u t q u du  , 
0t s t  .                                                           (2.5) 

Lemma 2.1[4] 

Consider the equation 
1

'( ) ( ) ( ( ( ))) 0
m

k k k

k

u t q t f u t
=

+ = , 
0t t . If ( ) 0kq t  , 

0( )k t t t   , 

1 k m   and if 

   
1( )

liminf ( ) 0

t m

k
t

kt

q s ds l


→
=

=   

then we have  

1 1( ) ( )

liminf ( ) liminf ( ) ,

t tm m

k k
t t

k kt t

q s ds q s ds l
 

→ →
= =

= =                                                        (2.6) 

where 
0

( ) : sup ( )k k
t s t

t s 
 

= and 
1

( ) max ( )k
k m

t t 
 

= , 
0 0t t  . 

Theorem 2.1 

Assume that the hypotheses (1.2 ), (1.3) and the condition (2.3) hold, if  

( )

1 1( ) )

limsup ( )exp ( ) 3
k

k

st m m

k i
t k it t

q s q d ds P



 

 
→ = =

  
 

  
   ,             (2.7) 

where ( )k t are non-monotone or non decreasing and ( )t  is defined as in (2.1) and
1
max ( )k

k m
P t

 
= , 

then all the solutions of (1.1) oscillate. 

Proof: 

Assume for the sake of contradiction, that there exists a non oscillatory solution ( )u t  of (1.1). Since 

( )u t−  is also a solution of (1.1), whenever ( )u t  is a solution of (1.1) therefore it is enough to prove 

the theorem for positive solutions of (1.1). Then, there exists 1 0t t  such that ( ) 0, ( ( )) 0ku t u t   

and ( ( )) 0ku t  , 1 k m   for all 
1t t .Then, from (1.1) we have 

  
1

'( ) ( ) ( ( ( ))) 0
m

k k k

k

u t q t f u t
=

= −   for all 1t t ,             (2.8) 

 which means that ( )u t is an eventually non-increasing function of positive numbers. 

Using (2.3) we can choose 2 1t t , so large that 
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1 1
( ( )) ( ) ( )

3 3
k

k

f u t u t u t
P P

   for all 
2t t .                                  (2.9) 

Using (2.9) in (1.1), we have 

1

1
'( ) ( ) ( ( )) 0

3

m

k k

k

u t q t u t
P


=

+   for all 
2t t .              (2.10) 

 Integrating (2.10) from ( )t  to t and also using Gr𝑜̈nwall’s inequality we get 

( )

1 1( ) ( )

1
( ) ( ( )) ( ) ( ( ))exp{ ( ) } 0

3

k

k

st m m

k k i

k it s

u t u t q s u s q d ds
P



 

   
= =

− +    , 

now using the monotonicity of u we get 

( )

1 1( ) ( )

1
( ) ( ( )) ( ( )) ( )exp{ ( ) } 0

3

k

k

st m m

k i

k it s

u t u t u t q s q d ds
P



 

   
= =

− +    , 

or 
( )

1 1( ) ( )

1
( ( )) ( ( )) ( )exp{ ( ) } 0

3

k

k

st m m

k i

k it s

u t u t q s q d ds
P



 

   
= =

− +    . 

 

( )

1 1( ) ( )

1
( ( )) 1 ( )exp{ ( ) } 0

3

k

k

st m m

k i

k it s

u t q s q d ds
P



 

  
= =

 
− −  

  
   , 

and hence 

 

 

( )

1 1( ) ( )

( )exp{ ( ) } 3
k

k

st m m

k i

k it s

q s q d ds P



 

 
= =

    

for sufficiently large t. Therefore, we get 
( )

1 1( ) ( )

limsup ( )exp{ ( ) } 3
k

k

st m m

k i
t k it s

q s q d ds P



 

 
→ = =

   . 

This is a contradiction to (2.7). The proof is completed.  

 

Theorem 2.2 

Assume that the hypotheses (1.2), (1.3) and the condition (2.3) hold. If ( )k t  are non-monotone or 

non decreasing and if 

 

( )

1 1( ) ( )

3
liminf ( )exp ( )

k

k

st m m

k i
t

k it s

P
q s q d ds

e



 

 
→

= =

  
 

  
   ,                                                  (2.11) 

where 
1

max k
k m

P P
 

=  and 
1

( ) min ( )k
k m

t t 
 

= , then all solutions of (1.1) oscillate. 

Proof: 
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Suppose to the contrary that (1.1) has a nonoscillatory solution u(t) on 
0[ , )t  .  Without loss of 

generality, we can assume that there exists a 
1 0t t  such that ( ) 0u t   and ( ( )) 0ku t   on 

1[ , )t  .  

Thus from (1.1) we have 

  
1

'( ) ( ) ( ( ( ))) 0
n

k k k

k

u t q t f u t
=

= −   for all 
1t t ,  

which means that ( )u t is an eventually nonincreasing function of positive numbers. 

Case1 

Suppose that 0kP   for 1 k m  ,  Then, by (2.3) we can choose 
2 1t t , so large that 

1 1
( ( )) ( ) ( )

3 3
k

k

f u t u t u t
P P

   for all 
2t t .              (2.12) 

Using Gr𝑜̈nwall inequality in (2.10) , we obtain 
( )

1 1( )

1
'( ) ( ) ( ( ))exp{ ( ) } 0

3

k

k

sm m

k k i

k is

u t q t u t q d ds
P





  
= =

+    for all 
2t t .           (2.13)      

Using (2.12) and Lemma (2.1), it follows that there exists a constant 0d   such that 

( )

1 1( ) ( )

3
( )exp{ ( ) }

k

k

st m m

k i

k it s

P
q s q d ds d

e



 

 
= =

      for all 
3t t .           (2.14) 

Also, from (2.14) there exists a real number 
* ( ( ), )t t t  for all 

3t t such that 

* ( )

1 1( ) ( )

3
( )exp{ ( ) }

2

k

k

st m m

k i

k it s

P
q s q d ds

e



 

 
= =

                (2.15) 

and 

*

( )

1 1( )

3
( )exp{ ( ) }

2

k

k

st m m

k i

k ist

P
q s q d ds

e





 
= =

   .                          (2.16) 

 

Integrating (2.13) from ( )t  to 
*t , we get 

* ( )

*

1 1( ) ( )

1
( ) ( ( )) ( ) ( ( ))exp{ ( ) } 0

3

k

k

st m m

k k i

k it s

u t u t q s u s q d ds
P



 

   
= =

− +     

or 

 
* ( )*

*

1 1( ) ( )

( ( ))
( ) ( ( )) ( )exp{ ( ) } 0

3

k

k

st m m
k

k i

k it s

u t
u t u t q s q d ds

P



 


  

= =

− +    .                

Using (2.15) in the above inequality, we get 

                   (2.17) 

 

Similarly, integrating (2.13) from 
*t to t and also using (2.16) we get 

*( ( ))
( ( )) 0.

2

ku t
u t

e


− + 
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* ( ( ))
( ) 0.

2

ku t
u t

e


− +                   (2.18) 

Combining  (2.17) and (2.18), we get 

  

*

2

( ( )) ( ( ))
( *)

2 (2 )

u t u t
u t

e e

 
  , 

and hence we have 

*
2( ( ))

(2 )
( *)

u t
e

u t


    .                 (2.19) 

Let 
( ( *))

( *)

u t

u t


 = .                 (2.20) 

 Then 1  is finite. Now we divide (1.1) by u(t)>0 and integrating from ( )t  to t we get 

1( ) ( )

( ( ( )))'( )
( ) 0

( ) ( )

t t m
k k

k

kt t

f u su s
ds q s ds

u s u s
 



=

+ =  ,      

1( )

( ( ( ))) ( ( ))( )
ln ( ) 0

( ( )) ( ( )) ( )

t m
k k k

k

k kt

f u s u su t
q s ds

u t u s u s


 

 =

+ = , 

Then using (2.12) we get 

( )

( ( ))( ) 1
ln ( ) 0

( ( )) 3 ( )

t

k
k

t

u su t
q s ds

u t P u s





+  . 

Since ( ) ( ) ( )k kt t t     for 1 k m  , we have 

( )

1 1( ) ( )

( ( ))( ) 1
ln ( ) exp ( ) 0

( ( )) 3 ( )

k

k

st m m
k

k i

k it s

u su t
q s q d ds

u t P u s



 


 

 = =

  
+  

  
   , 

( )

1 1( ) ( )

( ( ))( ( )) 1
ln ( )exp ( )

( ) 3 ( )

k

k

st m m
k

k i

k it s

uu t
q s q d ds

u t P u



 

 
 

 = =

  
  

  
   ,  

( ( ))( ( )) 1
ln

( ) ( )

kuu t

u t e u

 


 ,                  (2.21) 

where   is defined by ( )t t   . 

Using (2.3), (2.13), (2.20) and then taking lim inf on both sides of (2.21), we get 
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ln 
e


  .                    (2.22) 

But (2.22) is not possible since ln u
u

e
  for all 0u  . 

Case2 

Suppose that 0kP =  for 1 k m  and also using the condition (2.3), there exists 
4 3t t  such that 

( )

( ( ))k

u t

f u t
 ,  

4t t  

and 

( ( )) 1

( )

kf u t

u t 
 , 

4t t                 (2.23) 

where 0  is an arbitrary real number.  Thus from (1.1) and (2.23), we have 

1

1
'( ) ( ) ( ( )) 0

m

k k

k

u t q t u t
 =

+  . 

Integrating the above inequality from ( )t  to t , we get 

1( )

1
( ) ( ( )) ( ) ( ( )) 0

t m

k k

kt

u t u t q s u s ds


 
 =

− +  , 

( )

1 1( ) ( )

1
( ) ( ( )) ( ) ( ( ))exp{ ( ) } 0

k

k

st m m

k k i

k it s

u t u t q s u s q d ds



 

   
 = =

− +    , 

and 
( )

1 1( ) ( )

1
( ( )) ( ( )) ( )exp{ ( ) } 0

k

k

st m m

k i

k it s

u t u t q s q d ds



 

   
 = =

− +    .  

( )

1 1( ) ( )

1
( ( )) 1 ( )exp{ ( ) } 0

k

k

st m m

k k

k jt s

u t q s q d ds



 

  
 = =

 
− −  

 
 

                                         (2.24) 

By using (2.14) and (2.24), we have 

1
d


  

or 

  d  , 

which is a contradiction to 
0

( )
lim 0

( ( ))u
k

u t

f u t→
= . 

Thus the proof of the theorem is completed. 
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3  Example 

Example 3.1. Consider the equation 

1 1 2 2

1 2
'( ) ( ( )) ln( 20 ( ( )) ) ( ( )) ln(18 ( ( )) ) 0

10 10
u t u t u t u t u t   + + + + = ,   0t  ,  

where  

1

7 1, [4 ,4 1]

3 9 5, [4 1,4 2]
( )

2 11 5, [4 2,4 3]

3 9 10, [4 3,4 4]

t k if t k k

t k if t k k
t

t k if t k k

t k if t k k



− + −  +


− −  + +
= 

− + +  + +
 − −  + +

  

 

+                   

By (2.1), we have  

1 1

4
3 1, [4 ,4 ]

3

4
3 9 5, [4 ,4 2]

3
( ) sup ( )

11
3 1, [4 2,4 ]

3

11
3 9 10, [4 ,4 4]

3

s t

k if t k k

t k if t k k

t s

k if t k k

t k if t k k

 



−  +


 − −  + +


= = 
 +  + +


 − −  + +


 

and 
0

2 2 1( ) sup ( ) ( ) 1
t s t

t s t  
 

= = − , 0k N and 0N is the set of non negative integers. 
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Therefore 

  1
1 2

( ) max ( ) ( )i
i

t t t  
 

= = . 

If we put 1

1

10
q = , 2

2

10
q = , 

1( )f u =
1 1( ( )) ln( 20 ( ( )) )u t u t +  and  

2 ( )f u = u
2( ( ))t 2ln(18 ( ( )) )u t+ .  

Then we have                          

1
1

0 01 1 1

( ( ))( ) 1
limsup limsup 0.3338

( ( )) ( ( )) ln( 20 ( ( )) ) ln 20u u

u tu t
P

f u t u t u t



 → →

= = = =
+

  

2
2

0 02 2 2

( ( ))( ) 1
limsup limsup

( ( )) ( ( )) ln(18 ( ( )) ) ln18u u

u tu t
P

f u t u t u t



 → →

= = =
+

=0.3459 

 1 2 2

1
' max , 0.3459

ln18
P P P P= = = = . 

Now at 
10

4
3

t k= + , 
0k N we have  

   
( )2 2

1 1( ) ( )

( ) exp ( )
k

k

st

k i

k it s

q s q d ds



 

 
= =

  
 
  

  

1 2

1 2

( ) ( )

1 1 2 2 1 2

( ) ( ) ( ) ( )

( ) exp ( ( ) ( )) ( ) exp ( ( ) ( ))

s st t

t s t s

q s q q d ds q s q q d ds

 

   

     
      

= + + +   
      

     

=

10 10
4 4

3 1 33 3

3 1 3 9 10 3 1 3 9 11

1 3 2 3
exp exp

10 10 10 10

k k
k k

k s k k s k

d ds d ds 

+ +
+

+ − − + − −

   
+   

   
     

   

10 10
4 4

3 3

3 1 3 1

10
4

3

3 1

1 3 2 3
exp (12 3 11) exp (12 3 11)

10 10 10 10

3 3
exp (12 3 11)

10 10

1 3 3
exp 3 8 exp 1 3

3 10 10

k k

k k

k

k

k s ds k s ds

k s ds

k

+ +

+ +

+

+

   
= − + + − +  

   

 
= − + 

 

 
= + −  

 

 

  

( )

1 1( ) ( )

3
liminf ( )exp ( ) 0.38

k

k

st m m

k i
t

k it s

P
q s q u d ds

e



 


→

= =

  
 = 

  
    
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( )

1 1( ) ( )

limsup ( )exp ( ) 3 3
k

k

st m m

k i
t k it s

q s q u d ds P



 


→ = =

  
  

  
    

 All the conditions of Theorem2.1 and Theorem2.2 are satisfied.  Hence all solutions of (1.1) are 

oscillate. 
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