
Divya Sharma, Dr. Ganga Sharma

3726

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 7, July 2021: 3726-3742

Search-Based Approaches for Software Modularization/Re-modularization

Divya Sharmaa, Dr. Ganga Sharma b

a Department of Computer Science, Ph.D. Scholar, GD Goenka University
bDepartment of Computer Science, Assistant Professor, GD Goenka University

Abstract

Search-based Software Engineering helps in providing efficient decision support, and well as certain insights as

per the requirement. The theory of the concept is important to understand because these approaches could be

applied to every SDLC phase (Software Development Life Cycle Model) from a specification requirement point

of view to its maintenance as well as operations. Search issues like solving SE issues in search space implies to

find an ideal solution. The complete distribution of techniques for the prediction of defects is detailed further. A

total of 77.5% of the studies are done on different classification methods, where 1.5% is focussed on association

and clustering methods, and lastly, 14% analysis and studies are done on the different estimation techniques.

Additionally, nearly 35.21% of the conducted research makes use of private datasets, whereas 64.79% of the

conducted studies make use of public datasets. To predict software defects, nineteen distinct techniques were

implemented. Seven of the most used techniques are recognized in the forecast of software defects from the

nineteen techniques. However, there does exist numerous researches detailing the use of the search-based

method to predict the maintainability as well as the change in proneness. It was discovered that application

results when the search-based methods were followed for defect prediction and effort estimation were highly

encouraging. Hence the motivation for this study was based on which the associations of the results would help

the researchers and practitioners to get a set of guidelines and it would help them in making better choices of

using these search-based methods in its specific conditions.

Keywords: SBSE (Search-Based Software Engineering), Modularization, Re-modularization, Metaheuristic

Algorithms.

1. Introduction

SBO's interest in SE has resulted in enhanced interest in other types of SE optimization not necessarily based

on a “search”. In literature, the word “SBSE” was commonly used for any type of optimization where a problem

domain originates from SE and a solution includes optimization as per some well-defined concept of fitness [3].

Metaheuristic search methods like genetic algorithms along with several well-known strategies are used in

SBSE to address a broad range of problems related to the software. These difficulties can range from (but not

restricted to): project planning, maintenance, inverse engineering, and understanding of source code, refactoring

of source code to repairing of program. [2,11]

At present, SBSE's biggest application region is software testing where there are SBSE methods that can

create, enhance, and optimize test suites.

We describe a significant reorganization in the architecture of the system as re-modularization, with the main

objective of enhancing its inner quality and thus by not adding fresh characteristics or fixing bugs. In a

maximum of cases, structural aspects, such as static dependencies between architectural entities, guide re-

modularization. For instance, a common suggestion is that the cohesion must be as high as possible and the

coupling must be less that is manually followed or by using the re-modularization and semi-automatic tools.

Nevertheless, the reality is that there is no strong consensus on what constitutes a healthy architecture.

Architectural quality is a subjective notion that with standard quality metrics is hard to assess.

Search-Based Approaches for Software Modularization/Re-modularization

3727

For example, recent work started to question the structural cohesion/coupling dogma, stating that “coupling

and cohesion do not seem to be the dominant driving forces when it comes to modularization”.

Other research showed that structural cohesion metrics are generally divergent in evaluating the same

refactoring actions. Semantic clustering is a strategy based on data collection and clustering methods to obtain

sets of comparable classes according to their vocabulary in a scheme. Semantic clustering is a strategy based on

data collection and clustering methods to obtain sets of comparable classes according to their vocabulary in a

scheme [4,15,28,35,51].

Software Engineering can be split into two types: First, Black Box Optimization, which is a typical issue of

combinatorial optimization. Second, white box issues in which source code activities need to be considered. The

most widely used optimization and search techniques used are Local Search, Stimulated Annealing (SA),

Genetic Algorithms (GAs), and Genetic Programming (GP), Hill Climbing (HC), Greedy Replant Algorithm,

Linear Programming (LP) techniques, and Integer Linear Programming (ILP) [1,7]. Miller and Spooner [1976]

revealed the earliest attempt to apply optimization to a software engineering issue. The term SBSE was first

used by Harman and Jones in [2001].

This research also discusses the efficient experimental configurations and methods used in literature to use

search-based techniques for SEPM assignments [18,19]. When the software engineer isolates the subsystem,

consideration is given to the software structure, regardless of what is relevant to his work. The quality of the

graph partition is evaluated by the approach since it represents the software structure and uses heuristics to

navigate all possible graph partitions through the search space. The issue can be solved by several possible

heuristic methods and are examined in this article by taking the referred documents. Software clusters are

independent of any programming language and we need the source code analysis tool in which a direct graph

can be acquired from source code to accomplish this.

Low coupling is the sign of a well-designed software system. The notion of software cohesion was described

by the person who defined it as the degree to which a module's inner content is linked [6,17,23,30]. When the

software engineer isolates the subsystem, consideration is given to the software structure, regardless of what is

relevant to his work.

The quality of the graph partition is evaluated by the approach since it represents the software structure and

uses heuristics to navigate all possible graph partitions through the search space. The issue can be solved by

several possible heuristic methods and are examined in this article by taking the referred documents. Software

clusters are independent of any programming language and we need the source code analysis tool in which a

direct graph can be acquired from source code to accomplish this. Low coupling is the sign of a well-designed

software system. The notion of software cohesion was described by the person who defined it as the degree to

which a module's inner content is linked [6,17,23,30].

2. Methods

This phase includes giving the study questions clear responses [14,19,32]. In this research, a total of three

reviewers analyzed all of the collected data separately. The opinion they help majorly was following a

consultant as an external specialist in the event of inconsistent views. We explain the information of these three

phases in this chapter as it is related to the present topic of analyzing different analyses and studies which are

also reported in detail while reviewing the literature [7,19,23,29]. Systematic literature review methods are

described by the guidelines taken from Kitchenham [22,27,39]. The major perspective was to analyze and assess

the secondary research studies commonly called systematic literature reviews (SLRs).

The set of questions that are to be used in the research must be listed with a clear objective in the mind of the

researchers which can help in guiding the whole investigation process and the methodology of the research to be

followed [11,19,44]. These questions were based on an intention on which the different studies are discovered to

analyze a phenomenon or a precise topic.

In addition to this, the protocol followed for the review also comprised of a search strategy followed to

extract exact studies and analysis when can help in forming a better review.

Divya Sharma, Dr. Ganga Sharma

3728

The method of unbiased collection approach followed in the studies, and a criterion to judge the quality

analysis of these studies as well as the data synthesis and collection procedure followed spanning from a

selection of primary studies to the appropriate answers given for the questions all were considered [7]. When an

inconsistent set of opinions were discovered, the majority opinions were followed with proper consultation from

an expert. Under this section of the study, complete details of the three stages followed were described, which is

further related to the step of analyzing the many reports studies in the literature review. As mentioned before,

the primary objective of this review is to observe the uses of different search-based methods of SBSE in code

modularization.

2.1 Research Questions

The research is based on an objective of investigating the present methods which are followed in the field of

SBSM for improving the techniques which are available for making the whole method of refactoring a software

more efficient to be used in a real-time setting of software development [3,18,29,39]. The initial seven research

questions referred below are equal to the original research study [12,34,50].

The objectives of the research were addresses as per the following set of questions.

Research Question

No.

Research Question

Q1. How can we define Modularization/Re-modularization in SBSE?

Q2.

“How does the proposed multi-objective approach based on

NSGA-II perform compared to random search and a mono-objective

approach?

Q3.
How does our approach perform compared to existing bugs

localization techniques not based on heuristic search?

Q4.

What are the advantages and disadvantages of search-based

software engineering techniques and Modularization/Re-

modularization?”

Table 1: Research Questions

2.2 The Search Process

Search processes are a manual process that is specific to conference proceedings and research papers since

the year 2004 [13,18,19]. The string of search followed was for identifying the set of related studies which were

sourced from 5 main databases: IEEEXplore, Information and Software Technology (IST), ACM Digital

Library, SpringerLink, ScienceDirect, Empirical Software Engineering Journal, IEEE Proceedings Software,

ACM Computer Survey and Wiley Online Library.

Further, Xanthakis et al. [20, 22] make use of search-based methods for the applications of software

engineering (testing software), the time of all the studies was selected to be from Jan’ 1992 to Dec’2015.

(“software” OR “application” OR “project” OR “open source project” OR “product”) AND (“Effort” OR

“Defect” OR “Fault” OR “Error” OR “Cost” OR “Maintainability” OR “Maintenance Effort” OR “Change” OR

“Size”) AND (“proneness” OR “prone” OR “prediction” OR “probability” OR “classification” OR

“estimation”) AND (“Search-based” OR “Evolutionary” OR “Meta-heuristic” OR “heuristic” OR “Multi-

objective”) AND (“Genetic Programming” OR “Gene Programming” OR “Genetic Algorithm” OR “Particle

Swarm Optimization” OR “Ant Colony Optimization” OR “Classifier System” OR “Simulated Annealing” OR

Search-Based Approaches for Software Modularization/Re-modularization

3729

“Tabu Search” OR “Cuckoo Search” OR “Artificial Bee Colony” OR “Evolutionary Programming” OR

“Memetic Algorithm” OR “Neuro-evolution” OR “Artificial Immune System (AIS)” OR “Differential

Evolution” OR “Harmony Search” OR “Teaching-learning-based Optimization”).

These automatic, as well as the efforts, resulted in a set of studies conducted by the authors, and also their

references mentioned in the articles were scanned for extracting more and more related studies. However useful

insights were also used, along with the list of references, although this data was not included in the whole

process of a systematic review and also had no effect on the empirical results. [12, 23-24]

2.3 Inclusion and Exclusion Criteria

Systemic Literature Reviews (SLRs): These are often called literature surveys with formal research questions

[5, 16], the search process, data extraction methods, data presentation, and appropriate context with formal

keywords.

The excluded research studies are as follows:

• Informal Literature reviews have no research questions, no properly defined search process

[11,29], and no proper formal data extraction process.

• Research papers describing the techniques and proceedings used for SBSE and SLRs.

2.4 Data Collection

The data collected from each research study is as follows:

• The source data collected [7,18,19] from the article, journal, or conference proceedings, and the

reference details.

• Categorization of the study i.e., type of the research like SLRs, Meta-Analysis [14,19,31], and

scope of the research study correlated with technical aspects including functional and

nonfunctional domain.

• The author(s) [11,14,29] with their corresponding details including organization and the

country.

• Research topic area [23,28,41,50].

• Research issues and questions [22,26].

• Summary of the research study incorporating research issues [12,28,50] and their relevant

answers.

• The research study includes SBSE for code modularization papers and its references with the

SLRs guidelines [22,41].

• Quality assessment [34] about all the relevant quality attributes of the research study.

• Primary and secondary studies [12,32,49] were used in the research.

• Manual searches on primary and secondary research studies.

Process and Sources

The list of main online sources used to extract the data:

(a) ACM digital library (http://dl.acm.org/)

(b) Google Scholar (http://scholar.google.co.in/)

(c) IEEE Xplore (http://ieeexplore.org/)

(http:/ieeexplore.org/)

Divya Sharma, Dr. Ganga Sharma

3730

(d) Science Direct (http://www.sciencedirect.com/)

(e) Springer LNCS (http://www.springer.com/gp/)

The data collected was analyzed, checked, and extracted. Thus, ensuring quality assessment [22,28,35] of all

the data collected from the primary research studies.

2.5 Data Analysis

The data collected was converted into a tabular form to conduct the following:

• The SLRs have referenced SBSE research papers along with the SLR guidelines [22, 27,29,43]

which addresses RQ1-RQ3

• The number of literature reviews conducted and published each year [26,29,41,52] with its

referenced sources. This also addresses RQ1-RQ3.

• The research topics are covered as per the relevant area of interest by the SLRs [12,

27,31,44,53] with its referenced scope. This addresses RQ4.

• The quality assessment of each SLR has been observed [13] and calculated which addresses

RQ4.

• The research trends [16,29,40] and technical area covered addressing RQ6, RQ7.

• The number of primary and secondary studies [1,19,39] conducted in the research

study referencing RQ3-RQ4.2.6 Divergence from the Practice

While conducting research reviews on different SLRs and articles [13,19,51] few changes were made to the

original experimental procedures. These changes are as following:

• The description of major research questions was explained in brief with all the relevant data

[15,19].

• SLRs were explained as part of SBSE including code modularization/re-modularization [34,45].

• Different SLRs [12,19,31] were compared in the context of quality parameters such as quality

prediction maintainability, defect prediction, effort estimation, and change prediction to attain

quality enhancement in terms of code modularization.

• A connection between data collection and data extraction methods [1,23,25,47] with research

questions were made to attain the appropriate results.

2.7 Research Question Description

2.7.1 Description of Question 1: How can we define Modularization/Re-modularization in SBSE?

Modularization is usually a software design method that improves the extent to which software consists of

distinct interchangeable parts, known as modules [28,29,34].

An important step towards the work will be to count the number of actors associated with the code segment

in the respective modules. Modularization of software is a method followed to divide the whole system of

software into individual packages (modules) which are expected to loosely and cohesively couple. Although

developing software systems to satisfy fresh demands over time, their modularization becomes complicated and

their quality gradually loses [26,35].

http://www.sciencedirect.com/
http://www.springer.com/gp/

Search-Based Approaches for Software Modularization/Re-modularization

3731

Unintentionally, the modularization design follows the “divide and conquer” rule in the strategy of solving a

problem. This is because numerous benefits are there which could be linked to the modular designing of the

software. [34,39]

The benefits of the modularization method are as follows [43,49]:

• It is simpler to keep smaller parts.

• This program could also be categorized as per its functional characteristics.

• The program can include the desired amount of abstraction.

• Components of high-cohesion could also be used again.

• It is feasible to execute simultaneously.

• Security aspects desired.

(a) Modularization-Approach

To simplify the software maintenance operations, appropriate abstractions are developed from the software

framework [14,28,34]. The abstractions are recorded variants but are sometimes outdated and no longer used. It

points out why the clustering findings of the bunch were not evident at all. Bunch's results were prevalent and

structural characteristics independent of whether the MDGs [39,43] represented true systems. Using big

clustering outcomes, it is possible to model big landscapes. Using a search-based algorithm, search based

clustering algorithms such as Bunch can be assessed. Practitioners need to be reliable in their ability to work

perfectly, and this is achieved using systems like a bunch [42,48,50].

There is a thorough analysis of the search space of many open-source systems. Bunch’s clustering effects

were illustrated in many ways where the results of individual clustering were also used [27,28,29]. Ducasse S.,

Alloui I., Abdeen H., Suen M., and Pollet D., [21,27,29] have discussed how the packages are related to one

another and also demonstrated these relations. Software that is of large scale is made up of numerous packages.

Many developers are unable to grasp how packages are interrelated and positioned. The Blueprint of Package

Surface demonstrates a correlation between a package and another and allows it to be easy for the developer to

function with or to use them. These packages were represented under the definition of package surfaces

[29,31,37]. The category of relationships according to the package they belong to defines the concept of the

package surface. The product's structure of inheritance is seen along with the references that are made by a

package. [28,35]. Package visualization was conducted successfully where broad applications were used as the

inputs. The packages that were not designed well were listed out. Many different software maintainers were

used to conduct the tests. [38,41].

(b) Challenges in Optimizing Software Modularization

According to survey challenges in optimizing software, modularization is difficult to handle. Classes in

packages are not well spread. Additionally, the coupling of distinct package classes improves the coupling

among the packages. Hence, the maximum of the packages depends on some of the dominant ones (that is, the

packages containing many classes) [23,26,30].

Optimizing a modularization of quality can generate semantic incoherence: structural and semantic

dependencies need to be considered. Most of the current research disregard the effort of refactoring and generate

a major bang re-modularization that means that designers alter thousands of lines of code, even for humble

applications. It was estimated that designers would have to alter their code by up to 10 percent when adapting

alternatives suggested by automated approaches to re-modularization [28,31]. We suggest a multipurpose

strategy to resolve these issues to improve the efficiency of software modularization about semantic constraints.

The suggested method also seeks to minimize the degree of modification in the solutions generated in terms of

achieved improvements. [22,29]

Divya Sharma, Dr. Ganga Sharma

3732

Re-modularization: Large-Scale Refactoring or Re-modularization as defined by Fowler, is another major

alteration in the process of implementation and designing, that is limited to the architectural factors. It was done

for organizing the entities of architecture in the modules with several interfaces, and to preserve the code

behavior.

A new organization could consider various elements of the relationship: prevalent change evaluated coupling

of functions. While the significance of re-modularization is quite famous, the method is lengthy in terms of time

and a challenging job for staff [29,38,39]. To point out the adjustments to be made, it needs a lot of program

understanding.

Re-modularization Analysis using Semantic Clustering: A method of Architecture Recovery proposed

originally for extracting the set of the same type of classes in a system is called Semantic Clustering. It works on

the lexical similarities present between the vocabularies [16,28]. It further promotes visualization [23,27] of

how the package design of the system disperses these sets. To create semantic clusters, four primary features are

suggested: weighting and text extraction using the source code, clustering courses with comparable vocabulary,

indexing a term using the latent semantic method of indexing, as well as visualizing how suggested clusters

were spread across a package system [25,38].

(c) Clustering

The clustering feature operates on a compact matrix where every document was denoted using a vector and

the resemblance between the different papers was estimated using the lowest angle cosine created by these

vectors [34,37]. A hierarchical agglomerative algorithm for clustering is performed after calculating the

resemblance between each pair of papers [45,48]. A single cluster that denotes the domain idea is allocated to

each class. The method also produces a tiny set of appropriate terms known as the semantic topics, representing

each cluster’s significance (or purpose).

(d) Visualization

Clusters that result from the method of semantic clustering were visualized with the help of Distribution

Maps. It is a type of visualization that displays a package in the form of boxes that are filled with squares that

represents the class of packages. A class's color reflects the cluster the class belongs to. Two types of data are

presented in a Distribution Map: (i) structural data indicates how these classes were structured into sets; (ii)

conceptual data refers to semantic clusters distribution as per the colors of classes. [21,25]

2.7.2 Description of Question 2: How does the proposed multi-objective approach based on NSGA-II

perform compared to random search and a mono-objective approach?

NSGA-II is an algorithm intended to discover the set of ideal alternatives, known as non-dominated

alternatives [23,25,28], including Pareto. This subsection describes a high-level perspective of NSGA-II [22,25]

tailored to an issue of re-modularization with the help of structural as well as semantic data. The algorithm

requires a code for re-modularization as an input. It begins by generating an individual's random population P0.

Then, with the help of alter and selection operators (both mutation and crossover), a Q0 baby population was

produced from P0 the parent population [22,25].

Both populations were merged with the R0 the initial population of M size, with a subset of individuals was

selected based on dominance principle (the objectives are RRAI, semantic and structural modularization, as well

as quality enhancement) and the crowding distance for the same dominance solution for creating next

generations [3,12]. The process is repeated with Max iterations. The algorithm's output is the best mixture of

refactoring to enhance the quality of software modularization (assessed by structural and semantic metrics) in

terms of their effort. [9,11,43]

(a) Model Refactoring using multi-objective optimization

The suggested strategy takes advantage of model refactoring examples and an effective algorithm NSGA-II

for suggesting the user automatically refactoring sequences that could be implemented to a specified model. It is

the user's responsibility to apply these refactoring algorithms [13,16,32].

Search-Based Approaches for Software Modularization/Re-modularization

3733

For example [13,23,40], this method does not decide on using a new name for a rename refactoring, but it

implies applying the operation mentioned for refactoring which helps the user to choose the right name

according to their experience.

The figure below introduced an overall framework of this strategy. This required inputs as sed of models that

are designed badly, label A [13,54] (that is, current models and its associated refactoring strategies), the models

that are designed properly don’t require any refactoring (label B), an original model (label C) which further

makes use of the software set of metrics (label D) as monitoring parameters [17,28].

The strategy produces a series of refactoring as the output which is used in the original model. The objective

of this strategy is for suggesting refactoring that helps in making the design in terms of quality comparable to

healthy ones, so we implicitly regarded the reality that refactoring must enhance quality by meeting quality

standards comparable to those of excellent design. The method of creating a refactoring sequence (Fig. 1) could

be used as a system that discovers a better way of selecting and combining the activities of refactoring out of the

ones that are based on the examples in a way as to (a) Maximizing the textual and structural similarities among

the entities that are reflected in an original model and are simulated entities of models that are not designed

properly, (b) minimizing the structural similarities among the different entities which are refactored in the initial

model with the model entities of the models which are well-designed. Structural similarities among these two

entities or classes are calculated using these entities' software metrics where their similarities in the texts are

estimated using the WordNet-based linear measures. [10,13,15,25]

Figure 1. Model refactoring Multi-objective with the help of examples

We compared the performance [25,36] of NSGA-II using a mono-objective and random search genetic

algorithm which aggregates every objective into one with an equal measure of weights.

Therefore, when the random search method exceeds the technique of guided search, it can be concluded that

formulating this problem is not enough.

It was essential for determining whether the goals were conflicting, carry out a method with the mono

objective. The earlier method returns a collection of alternatives that are non-dominating whereas the latter

method helps in returning an ideal solution. Hence, a closet solution was chosen to a Knee point [29,33] (that is,

a vector consisting of the highest value of objectives among the population members) as the solution of a

candidate for comparing with single solutions which are returned by an algorithm with mono-objective [34, 37].

NSGA-II adaptation: We explain how we tailored NSGA-II to discover an optimal trade-ff among the

textual and structural resemblance. IAs our goal is to maximize the textual and structural similarities among the

given model (the algorithm which is to be implemented) as well as a set of models that are designed badly based

on the examples (models undergoing some refactoring) [31,40] & reducing the structural similarities among the

model given and a set of models which are designed properly based on examples [33,36,38] (models that do not

need any refactoring). In an NSGA-II goal, we separate each criterion. The algorithm requires as its input

several examples of model refactoring (our example base), an original model, with a set of metrics. The initial

population is built as the individual model sets which represent the solutions possible that are used in the class

of an initial model. Here individual means the set of blocks in which every block is comprised of CIM (class

Divya Sharma, Dr. Ganga Sharma

3734

selected from an original model), the CBE (class selected as per the examples) matching to the CIM, and a

refactoring list that is a subset of refactoring used in CBE which is used in CIM. [10,13,17,19]

2.7.3 Description of Question 3: How does our approach perform compared to existing bugs

localization techniques not based on heuristic search?

(a) Bug Localization: Due to its description, the bug location issue [13,18,20] could be regarded as finding a

bug source. To solve the issue, most of the existing researches makes use of the IR (Information-Recovery)

method by detecting the semantic and textual similarities between a source code and new report entities.

Different IR methods, namely “Latent Semantic Indexing” (LSI), “Latent Dirichlet Allocation” (LDA) [11], and

“Vector Space Model” (VSM) [12,16] have been explored. Furthermore, hybrid models were obtained from

these IR methods to address the issue of bug location. Based on the above IR methods, we summarize the

various instruments and methods suggested in the literature. Bug Scout is a topic-based method that uses LDA

for evaluating the data linked to bugs (description, remarks, external links) for detecting the origin of a bug &

duplicate bug reports [3,6,10]. However, the precision of Debug Advisor relies on the precision of the

description of the report and its precision while describing a bus and its associated code entities. Bug Locator

uses the combination of different scores of similarities for bug localization from past reports. It produces a VSM

method to be used to remove suspicious source files. Then Bug Locator mines bug reports that were earlier

resolved along with associated documents to rank suspect code fragments. [13,18,20](b) Fault Localization

A mix of programming languages such as JavaScript, PHP, and Structure Query Language (SQL) [13,18,32]

are published in web applications. Pages are not presented correctly in the web application domain owing to any

deformed cross-language mistake like in HTML. These errors can be hard to locate due to the dynamic

generation of these codes. Cross-based language fault places are recognized in this article using technique and

heuristic search strategies based on traverse assessment.[14] Due to the vibrant generation of these codes, such

as HTML [15,21,28]and cross-based language errors can be difficult to find. In the paper, the fault locations of

the cross-based language were acknowledged with the help of technical and heuristic search strategies based on

traverse evaluation. Depending on these inputs, that causes this application to hurtle, the failures were

determined in prior work. It wasn't addressing the issue. Statistical analysis between the failing and passing of a

test for discovering the fault location. Additionally, numerous algorithms of localizing the statistical faults were

used for finding the whole process of localizing. With the help of Tarantula and Ochiai [15,16,17], the Jaccard

algorithm was used to determine the proportion of passed and failed statements testing. For each performed

declaration, the suspiciousness rating is calculated to predict the place of the fault.

For each performed declaration, the suspiciousness rating is calculated to predict the place of the fault. In

statistical fault localization methods, the enhancements are provided to improve the effectiveness of fault

localization.

(c) Heuristic Search

This is a method followed for solving an issue faster than any other conventional method, or in case of

finding an exact solution in case conventional method is not able to. This method is used as a shortcut as one of

the aspects of velocity accuracy, completeness, optimality, are traded. These search methods are looked at by a

heuristic (or heuristic feature) [18,23,28]. It evaluates the data accessible at each branching step and decides on

a type of branch that should be followed. This is done when the different alternatives are ranked. A heuristic is

defined as a device that is usually very effective but would not offer a high guarantee in all the cases [18,19,25].

2.7.4 Description of Question 4: What are the advantages and disadvantages of search-based software

engineering techniques and Modularization/Re-modularization.

Modularization is often used by developers [17,26,34] to simplify their coding. The coding process is broken

down into different steps with modularization instead of having to do one big piece of code at a moment.

This technique offers several benefits for designers over other approaches [14,17].

(a) Manageability

Search-Based Approaches for Software Modularization/Re-modularization

3735

One of the benefits of using this approach is that it divides everything into more manageable parts. It could

be extremely hard to remain focused on every line of coding when developing a big software program [23,27].

But if a code is broken down among different parts, its analysis doesn't seem to be almost difficult, which helps

designers remain [14,17,19] on the job and prevent being overwhelmed by the idea that a specific project has

too much to do with it.

(b) Team Programming

As part of the general program, each programmer can be provided an assignment to finish. Then, to generate

the program, all the different work [22,26,28] from the programmers is collected at the end. This helps speed up

the job and makes it possible to specialize.

(c) Reusable Code

Modular code makes it easy for the developers to use a code again. In case a certain task is sectioned among

different classes or functions, it implies that a developed could reuse that specific code when a job is to be

performed [10,19]. In case the codes are not organized among different discrete parts, referencing, separating, or

implementing that code in other programming situations is more difficult (or impossible) [22,28].

(d) Easier to Debug

This can take a lot of precious time as a programmer searches lines of the code looking for any error that

might have occurred and the issues that are created in the program later [14,18]. However, if a program is

intended with a modular mindset, every discrete assignment will have its separate code segment.

Hence, if a specific feature has an issue, the programmer understands the source of error and can handle a

narrower piece of code [32,35,38].

(e) Reusable Code

In case a certain task is specified to a certain class or function, which enables the developer to reuse a

specific code when a job is to be performed. When a code is not categorized among its discrete parts, reference,

separation, or implementation of that code in other programming situations is more difficult (or impossible)

[29,32].

2.8 Disadvantages of Modularization/Re-modularization

When a programmer wants the code to be as independent or generic as possible when they write modular

code, this can make it harder to solve special cases. However, once the data type is no longer a simple integer or

float, but an object (which you may not have any idea how to compare because the object will be made far in the

future after the sorting function has been coded), things may not be as easy as they now seem [35,37]. The

modular method of implementing this type of sorting technique for providing a custom comparison parameter

function. Now that implies, that every comparison is a call of function which certainly is a lot heavier than a

direct comparison. The drawback is that even integer or float will now suffer the same penalty for performance.

Even though the function of comparison is a single relational operator, it is still processed as a function call

[37,43,47].

This method was used for dividing a software system among different independent modules and multiple

discrete that were

expected to be independently capable of performing tasks. Unintentionally, the design of the model followed

the rules of strategies followed for solving problems of “divide and conquer” [30,32,37] as several advantages

were also associated with the software’s modular design.

2.9 Advantages and Disadvantages SBSE

Divya Sharma, Dr. Ganga Sharma

3736

A search-based technique has distinctive features, benefits, and disadvantages. Therefore, analyzing the

methods closely before using them for a predictive modeling assignment is crucial for a research community as

well as software professionals [40,43,49]. However, since only some of the researches address the

characteristics of search-based methods, it was hard to simplify the situation that makes it suitable to apply a

search-based method [31,34,37].

2.10 Search Algorithms

Many search Algorithms with various names are present which can be used in our strategies. There is a

whole family of algorithm which also makes use of some type of characteristics of the search algorithm.

According to the structure of the solution which was represented (dependent on a problem), [21,27,43], a

number of search operators were applied. Several types of search algorithms were defined which are applied in

the entire research. In the remainder of the thesis, an accurate description of the real algorithm used will be

provided when a search algorithm is used in a particular issue [45,48].

• Random Search (RS): It is the most basic type of search algorithm. It works by sampling the

search points randomly and is stopped when an optimum solution was discovered. This technique

does not exploit any data about the points that are visited previously while choosing the next points

for sampling. Usually, the random search method was used as a base to evaluate the performance of

other sophisticated metaheuristics. The most distinguishing property of the RS algorithm is the

distribution probability used to sample new solutions. If not stated uniform distribution method was

used [26,29].

• Hill Climbing (HC)- This method belongs to the local algorithm search class [27,34]. It begins with

a search stage and extends to the neighboring alternatives.

A neighboring solution was near structurally, but it depends on the distance concepts between alternatives. In

case one neighbor solution holds a better fitness value, the HC “moves” it and looks recursively into a new

neighborhood.

If no better neighbor was discovered, HC [32,35] starts with a new solution again. The starting points are

often randomly selected. A straightforward approach for visiting the neighborhood could be moving with better

fitness to the first neighboring solution discovered. Otherwise, another popular approach would be to assess all

of the neighborhood's alternatives and then move to the best [15,18].

• Alternating Variable Method (AVM): This is another version of the Hill Climbing method and

was used in Korel's early work in software testing [28]. AVM is also a single algorithm like HC

which starts its search from a random stage. Then moving to modify the input variables at one time

(under software testing). AVM makes use of exploratory search for the chosen variable in which the

variables are modified slightly (that is, a neighbor solution similar to HC). In case one neighbor

holds a better value of fitness, the exploratory search was listed to be successful. A better neighbor

was selected as the new solution [27,29,34].

• Memetic Algorithms (MAs): It is a metaheuristic method [29] that utilizes both local and global

search (example., an HC GA). Cultural evolution inspires it.

A meme is a cultural transmission imitation unit. The concept is to imitate these memes ' evolution process

[30,34]. From the optimization perspective, an MA can be approximately described as a metaheuristic based on

population in which, when a local search is used till a local optimum is reached. Using a GA is an easy way to

enforce a MA, with the only distinction being that an HC is applied to each generation until a local optimum is

achieved.

The price of implementing the local searches was extremely high, hence the size of the population was

generally smaller than in GAs and the complete number of generations [35,37,39].

Search-Based Approaches for Software Modularization/Re-modularization

3737

• Genetic Programming (GP): [30] is a paradigm for the development of programs for addresses

issues such as machine learning [31]. However, the applications of some evolutionary techniques of

software production could be traced back to 1985 with Cramer, since Koza [34,37] was commonly

known to GP in 1992 with many good applications in real-world issues. Due to the set of input

pairs and Y0 the expected output (that is training set: T), the objective of developing a program that

is capable of providing the correct answers for every input in T, i.e. g(x)=y0(x, y0)T. [45,47]

The training set, in other words, could also be used as the set of a test case that is to be met. A genetic

program was depicted as the tree where every node was a feature with output as child nodes. At each generation,

a population of programs is retained, where people are selected to fill the next population according to an issue-

specific function of fitness. This function must usually reward minimizing the program mistake when running

on the training set [43,47,49].

3. Result Analysis

3.1 Search Results

One of the major parameters is analyzing and assessing the current research work of the researchers. Few of

the research articles were excluded [34,36,39] following the criteria of exclusion and inclusion.

The data extracted from each research study has been manipulated in the tabular form and these can be found

in Table 3 and Table 4 [15,19,30] which includes the brief detail. Table 3 and Table 4 depicts the research

papers that have been published in the last 15 years addressing SBSE for code modularization [13,17,23,30,43].

Table 2: Summary of studies using Search-Based Software method with Clustering

Few research studies have been conducted under peer review research methodology. One of the major

parameters is analyzing and assessing the current research work of the researchers [30,35,38].

The data extracted from each research study has been manipulated in the tabular form and these can be found

in Table 3 and Table 4 [15,19,32,45] which includes the brief detail.

Divya Sharma, Dr. Ganga Sharma

3738

Table 3: Research Summary of SBSE for Code Modularization

3.2 Algorithms Analyzed

Figure 2 show various kinds of analysis in the algorithm. We have used different algorithms in SBSE, the

genetic algorithm 37%, in this algorithm mostly worked are done and they are used mostly. We take different

algorithms to check how to work easily and effectively [25,36,54]. The hill-climbing algorithm is also used in

this and that prediction is low, many other algorithms are used. In SBSM [45,48,54] and another algorithm is

used in 4%, so, the genetic algorithm is used.

Search-Based Approaches for Software Modularization/Re-modularization

3739

Figure 2. Algorithms Analyzed

4. Conclusion

Our future efforts are to study several other parameters of testing and evaluating them based on these

features and arrive at a conclusion that is the parameter that is test schema to enhance the system’s effectiveness

and stability. The study conducted above includes detailed literature that describes the usage of SBSE since the

previous fifteen years. Many issues were listed and discussed in detail as noticed by researchers and

practitioners in the many studies they have conducted. This further helps in explaining the data sets which were

used in this and their analysis, the methodology they followed as well as the measures of evaluation in the

implementation process for solving the problem in focus. This research further offers a brief view of the work

which was done already up to date but was not viewed comprehensively for every research conducted in the

field. This will help the authors to further explore the issue which is still pending in the field of SBSE and

therefore can be resolved by offering an efficient, effective, and viable solution for it.

REFERENCES

[1] International Journal of Computer Applications (0975 – 8887) Innovations in Computing and

Information Technology (Cognition 2015) Search-Based Software Engineering Techniques. Arushi

Jain M.tech Student ITM University, Gurgaon, Aman Jatain Assistant Professor Amity University,

Gurgaon.

[2] Bradbury, J.S., Kelk, D. and Green, M., 2013, May. Effectively using search-based software

engineering techniques within model checking and its applications. In Proceedings of the 1st

International Workshop on Combining Modelling and Search-Based Software Engineering (pp. 67-

70). IEEE Press.

[3] Räihä, O., 2010. A survey on search-based software design. Computer Science Review, 4(4), pp.203-

249.

[4] Santos, G., Valente, M.T. and Anquetil, N., 2014, February. Re-modularization analysis using

semantic clustering. In 2014 Software Evolution Week-IEEE Conference on Software Maintenance,

Reengineering, and Reverse Engineering (CSMR-WCRE) (pp. 224-233). IEEE.

[5] Information & Software Technology, vol. 43, no. 14, pp. 833-839, Dec.2001.

[6] Mahouachi, R., 2018. Search-Based Cost-Effective Software Remodularization. Journal of Computer

Science and Technology, 33(6), pp.1320-1336.

[7] B. A. Kitchenham. 2007. Guidelines for performing systematic literature review in software

engineering, Technical report EBSE-2007-001, UK.

[8] Rawat, M.S., and Dubey, S.K., 2012. Software defect prediction models for quality improvement: a

literature study. International Journal of Computer Science Issues (IJCSI), 9(5), p.288.

Divya Sharma, Dr. Ganga Sharma

3740

[9] Mahouachi, R., 2018. Search-Based Cost-Effective Software Remodularization. Journal of Computer

Science and Technology, 33(6), pp.1320-1336.

[10] Ghannem, A., Kessentini, M., Hamdi, M.S., and El Boussaidi, G., 2018. Model refactoring by

example: A multi‐objective search-based software engineering approach. Journal of Software:

Evolution and Process, 30(4), p.e1916.

[11] Dumais, S.T.: ‘Latent semantic analysis’, Annual review of information science and technology,

2004, 38, (1), pp. 188-23.

[12] Blei, D.M., Ng, A.Y., and Jordan, M.I.: ‘Latent Dirichlet allocation’, the Journal of Machine

Learning Research, 2003, 3, pp. 993-1022.

[13] Zhou, J., Zhang, H., and Lo, D.: ‘Where should the bugs be fixed? more accurate information

retrieval-based bug localization based on bug reports’, in Editor (Ed.) (IEEE, 2012, edn.), pp.14-2.

[14] Artzi, S., Dolby, J., Tip, F. and Pistoia, M., 2011. Fault localization for dynamic web applications.

IEEE Transactions on Software Engineering, 38(2), pp.314-335.

[15] J.A. Jones and M.J. Harrold, “Empirical Evaluation of the Tarantula Automatic Fault-Localization

Technique,” Proc. IEEE/ACM Int’l Conf. Automated Software Eng., pp. 273-282, 2005.

[16] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of Test Information to Assist Fault

Localization,” Proc. Int’l Conf. Software Eng., pp. 467-477, 2002.

[17] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, “An Evaluation of Similarity Coefficients for

Software Fault Localization,” Proc. 12th Pacific Rim Int’l Symp. Dependable Computing, pp. 39-46,

2006.

[18] Harman, M., Mansouri, S.A. and Zhang, Y., 2009. Search based software engineering: A

comprehensive analysis and review of trends techniques and applications. Department of Computer

Science, King’s College London, Tech. Rep. TR-09-03, p.23.

[19] Harman, M., 2007, June. Search based software engineering for program comprehension. In 15th

IEEE International Conference on Program Comprehension (ICPC'07) (pp. 3-13). IEEE.

[20] Rawat, M.S., and Dubey, S.K., 2012. Software defect prediction models for quality improvement: a

literature study. International Journal of Computer Science Issues (IJCSI), 9(5), p.288.

[21] Ducasse S, Pollet D, Suen M, Abdeen H, Alloui I (2007) Package surface blueprints: visually

supporting the understanding of package relationships. In: Proceedings of an international conference

on software maintenance. Paris, France.

[22] Mahouachi, R., 2018. Search-Based Cost-Effective Software Re-modularization. Journal of

Computer Science and Technology, 33(6), pp.1320-1336.

[23] Dorigo, M. and Stützle, T., 2003. The ant colony optimization metaheuristic: Algorithms,

applications, and advances. In Handbook of metaheuristics (pp. 250-285). Springer, Boston, MA.

[24] Chen, L. and Dey, S., 2001. Software-based self-testing methodology for processor cores. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 20(3), pp.369-380.

[25] Mark Harman, “The Current State and Future of Search-Based Software Engineering”.

[26] Arcuri, A., 2009. Automatic software generation and improvement through search-based

techniques (Doctoral dissertation, University of Birmingham).

[27] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal of

Computer and System Sciences, 37(1):79–100, 1988.

[28] B. Korel. Automated software test data generation. IEEE Transactions on Software Engineering,

pages 870– 879, 1990.

[29] P. Moscato. On evolution, search, optimization, genetic algorithms, and martial arts: Towards

memetic algorithms. Caltech Concurrent Computation Program, C3P Report 826, 1989.

[30]

[31] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic programming. Published via

http://lulu.com and freely available at http://www.gp-field-guide.org.uk, 2008.

http://lulu.com/
http://www.gp-field-guide.org.uk/

Search-Based Approaches for Software Modularization/Re-modularization

3741

[32] Mohan, M. and Greer, D., 2018. A survey of search-based refactoring for software maintenance.

Journal of Software Engineering Research and Development, 6(1), p.3.

[33] AHUJA, S.P. 2000. A genetic algorithm perspective to distributed systems design. In: Proceedings of

the Southeast 2000, 2000, 83 – 90.

[34] AMOUI, M., MIRARAB, S., ANSARI, S. AND LUCAS, C. 2006. A genetic algorithm approach to

design evolution using design pattern transformation, International Journal of Information

Technology and Intelligent Computing 1 (1, 2), June/ August 2006, 235 – 245.

[35] ANTONIOL, G., DI PENTA, M. AND NETELER, M. 2003. Moving to smaller libraries via

clustering and genetic algorithms. In Proceedings of the Seventh European Conference on Software

Maintenance and Reengineering (CSMR'03), 2003, 307 – 316.

[36] BASS, L., CLEMENTS, P., AND KATZMAN, R. 1998.Software Architecture in Practice, Addison-

Wesley, 1998.

[37] BODIN, T., DI PENTA, M., AND TROIANO, L. 2007.A search-based approach for dynamically re-

packaging downloadable applications, In Proceedings of the Conference of the Center for Advanced

Studies on Collaborative Research (CASCON’07), 2007, 27 – 41.

[38] BOUKTIF, S., KÉGL, B. AND SAHRAOUI, H.2002. Combining software quality predictive

models: an evolutionary approach. In: Proceedings of the International Conference on Software

Maintenance (ICSM’02) 2002.

[39] BOUKTIF, S., AZAR, D., SAHRAOUI, H., KÉGL, B. AND PRECUP, D. 2004. An improving rule

set based software quality prediction: a genetic algorithm-based approach, Journal of Object

Technology, 3(4), April 2004, 227 – 241.

[40] BOUKTIF, S. SAHRAOUI, H. AND ANTONIOL, G. 2006. Simulated annealing for improving

software quality prediction, In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2006), 1893 – 1900.

[41] BOWMAN, M., BRIAND, L.C., AND LA BICHE, Y. 2008. Solving the class responsibility

assignment problem in object-oriented analysis with multi-objective genetic algorithms, Technical

report SCE-07-02, Carleton University.

[42] BRIAND, L., WÜST, J., DALY, J., PORTER, V. 2000. Exploring the relationships between design

measures and software quality in object-oriented systems. Journal of Systems and Software, 51,

2000, 245 – 273.

[43] BUI, T. N., AND MOON, B.R. 1996. Genetic algorithm and graph partitioning, IEEE Transactions

on Computers, 45(7), July 1996, 841 – 855.

[44] CANFORA, G., DI PENTA, M., ESPOSITO, R., AND VILLANI, M.L. 2005a. An approach for

QoS-aware service composition based on genetic algorithms, In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO) 2005, June 2005, 1069–1075.

[45] CANFORA, G., DI PENTA, M., ESPOSITO, R., AND VILLANI, M.L. 2005b. QoS-aware

replanning of composite web services, In Proceedings of IEEE International Conference on Web

Services (ICWS’05) 2005, 2005, 121– 129.

[46] CANFORA, G., DI PENTA, M., ESPOSITO, R., AND VILLANI, M.L. 2004. A lightweight

approach for QoS-aware service composition. In: Proceedings of the ICSOC 2004 – short papers.

IBM Technical Report, New York, USA.

[47] CAO, L., L I, M. AND CAO, J. 2005a. Cost-driven web service selection using genetic algorithm, In

LNCS 3828, 2005, 906 – 915

[48] CAO, L., CAO, J., AND LI, M. 2005b. The genetic algorithm utilized in cost-reduction driven web

service selection, In LNCS 3802, 2005, 679 – 686.

[49] CHE, Y., WANG, Z., AND LI, X. 2003. Optimization parameter selection using limited execution

and genetic algorithms, In APPT 2003, LNCS 2834, 2003, 226–235.

[50] CHIDAMBER, S.R., AND KEMERER, C.F. 1994. A metrics suite for object-oriented design. IEEE

Transactions on Software Engineering 20 (6), 1994, 476 – 492.

Divya Sharma, Dr. Ganga Sharma

3742

[51] CLARKE, J., DOLADO, J.J., HARMAN, M., HIERONS, R.M., JONES, B., LUMKIN, M.,

MITCHELL, B., MANCORIDIS, S., REES, K., ROPER, M., AND SHEPPERD, M. 2003.

Reformulating software engineering as a search problem, IEE Proceedings - Software,150 (3), 2003,

161 – 175.

[52] DEB, K. 1999. Evolutionary algorithms for multi-criterion optimization in engineering design, In

Proc. Evolutionary Algorithms in Engineering and Computer Science (EUROGEN’99) 135 – 161.

[53] DIPENTA, M., NETELER, M., ANTONIOL, G. AND MERLO, E. 2005. A language-independent

software renovation framework, The Journal of Systems and Software 77, 2005, 225 – 240.

[54] DOVAL, D., MANCORIDIS, S., AND MITCHELL, B.S., 1999. Automatic clustering of software

systems using a genetic algorithm, In Proceedings of the Software Technology and Engineering

Practice, 1999, 73 – 82.

[55] FALKENAUR, E. 1998. Genetic Algorithms and grouping problems, Wiley, 1998

[56] FATIGUE, D., HARMAN, M. AND HIERONS, R. 2004. Evolving transformation sequences using

genetic algorithms. In Proceedings of the 4th International Workshop on Source Code Analysis and

Manipulation (SCAM 04), Sept. 2004, IEEE Computer Society Press, 65 – 74.

[57] GOLD, N., HARMAN, M., LI AND, Z., AND MAHDAVI, K. 2006. A search-based approach to

overlapping concept boundaries. In Proceedings of the 22nd International Conference on Software

Maintenance (ICSM 06), USA Sept. 2006, 310 – 319.

[58] GOLDSBY, H. AND CHANG, B.H.C. 2008. Avida-made: a digital evolution approach to

generating models of adaptive software behavior. In Proceedings of the Genetic Evolutionary

Computation Conference (GECCO 2008), 2008, 1751 – 1758.

[59] [58] GOLDSBY, H., CHANG, B.H.C., MCKINLEY, P.K; KNOESTER, D., AND OFRIA, C.A.

2008. The digital evolution of behavioral models for autonomic systems. In Proceedings of 2008

International Conference on Autonomic Computing, 2008

