Turkish Online Journal of Qualitative Inquiry (TOJQI) Volume 12, Issue 7, July 2021: 3849 - 3856

Research Article

On Binary Quadratic Diophantine Equation $11x^2 - 10y^2 = 11$

S. Devibala and B. Malini Devi

Department of Mathematics, Sri Meenakshi Govt. Arts College for Women (A), Madurai

M. A. Gopalan

Department of Mathematics, Shrimati Indira Gandhi College, Trichy bmalini22.mdu@gmail.com, devibala27@yahoo.com, mailrangamgopalan@gmail.com

ABSTRACT

This paper deals with the problem of obtaining non-zero distinct integer solutions to the non-homogeneous binary quadratic equation represented by the Pell-like equation $11x^2 - 10y^2 = 11$. Different sets of integer solutions are presented. Employing the solutions of the above equation, integer solutions for other choices of hyperbolas, parabolas and straight lines are obtained. A special Pythagorean triangle is also determined. The formation of Diophantine 3 – tuples with suitable property is illustrated.

KEYWORDS: Non homogeneous , Binary quadratic, Pell-like equation, hyperbola, parabola, integral solutions, Special numbers.

2010 mathematics subject classification: 11D09

INTRODUCTION

The binary quadratic Diophantine equations (both homogeneous and non homogeneous) are rich in variety [1-6]. In [7-21] the binary quadratic non-homogeneous equations representing hyperbolas respectively are studied for their non-zero integral solutions. These results have motivated us to search for infinitely many non-zero integral solutions of an another interesting binary quadratic equation given by $11x^2 - 10y^2 = 11$. The recurrence relations satisfied by the solutions x and y are given. Also a few interesting properties among the solutions are exhibited. A special Pythagorean triangle is also determined. The formation of Diophantine 3 – tuples with suitable property is illustrated.

METHOD OF ANALYSIS

The Diophantine equation representing the binary quadratic equation to be solved for its non-zero distinct integral solution is

$$11x^2 - 10y^2 = 11$$

Introduce the linear transformation

$$x = X + 10T, y = X + 11T$$
 (2)

From (1) & (2) we have,

$$X^2 = 110T^2 + 11$$

whose smallest positive integer solution is

$$X_0 = 11, T_0 = 1$$

To obtain the other solutions of (3), consider the Pell equation

$$X^2 = 110T^2 + 1$$

whose general solution is given by

$$\widetilde{T_n} = \frac{1}{2\sqrt{110}}g_n, \qquad \widetilde{X_n} = \frac{1}{2}f_n$$

Where
$$f_n = (21 + 2\sqrt{110})^{n+1} + (21 - 2\sqrt{110})^{n+1}$$

$$g_n = (21 + 2\sqrt{110})^{n+1} - (21 - 2\sqrt{110})^{n+1}$$

Applying Brahmagupta lemma between (X_0, T_0) and $(\widetilde{X_n}, \widetilde{T_n})$, the other integer solutions of (1) are given by

$$x_{n+1} = \frac{21}{2}f_n + \frac{110}{\sqrt{110}}g_n$$

$$y_{n+1} = 11f_n + \frac{231}{2\sqrt{110}}g_n$$

The recurrence relations satisfied by x and y are given by

$$x_{n+3} - 42x_{n+2} + x_{n+1} = 0$$

$$y_{n+3} - 42y_{n+2} + y_{n+1} = 0$$

Some numerical examples of x and y satisfying (1) are given in the Table:1 below:

Table: 1 Numerical Examples

n	x_{n+1}	y_{n+1}		
-1	21	22		
0	881	924		
1	36981	38786		
2	1552321	1628088		
3	65160501	68340910		

From the above table, we observe some interesting relations among the solutions which are presented below:

- 1. x_{n+1} is odd & y_{n+1} is even.
- 2. $x_{2n} \equiv 0 \pmod{3}, n = 0,1,2,...$
- 3. $y_{2n-1} \equiv 0 \pmod{4}, n = 1,2,3,...$

Note 1: In addition to (2), one may also consider the linear transformations

$$x = X - 10T, y = X - 11T$$

which lead to a different set of integer solutions to (1).

Note 2: The substitution

$$y = 11T$$
 (6)

in (1) leads to

$$x^2 = 110T^2 + 1$$

which is the well known pellian equation whose general solution is given by

$$T_n = \frac{1}{2\sqrt{110}}g_n, \ x_n = \frac{1}{2}f_n$$

In view of (6), one obtains

$$y_n = \frac{11}{2\sqrt{110}}g_n$$

Thus, the above values of x_n , y_n satisfy (1) and these are different from the solutions presented above.

2. Relations among the solutions

$$\rightarrow$$
 $x_{n+1} - 42x_{n+2} + x_{n+3} = 0$

$$\triangleright$$
 21 $x_{n+1} - x_{n+2} + 20y_{n+1} = 0$

$$\rightarrow$$
 $x_{n+1} - 21x_{n+2} + 20y_{n+2} = 0$

$$\triangleright$$
 21 x_{n+1} - 881 x_{n+2} + 20 y_{n+3} = 0

3. Each of the following expressions represents a nasty number

$$\triangleright$$
 (504 x_{2n+2} – 12 x_{2n+3} + 12)

$$\rightarrow \frac{1}{21}(10578x_{2n+2}-6x_{2n+4}+252)$$

$$\triangleright$$
 (252 x_{2n+2} – 240 y_{2n+2} + 12)

$$\rightarrow \frac{1}{21}(10572x_{2n+2}-240y_{2n+3}+252)$$

$$\rightarrow \frac{1}{881}(443772x_{2n+2}-240y_{2n+4}+10572)$$

4. Each of the following expressions represents a cubical integer

$$\rightarrow \frac{1}{42}[3526x_{3n+3}-2x_{3n+5}+10578x_{n+1}-6x_{n+3}]$$

$$\triangleright$$
 84 x_{3n+3} - 2 x_{3n+4} + 252 x_{n+1} - 6 x_{n+2}

$$\triangleright$$
 [21 x_{3n+4} - 881 x_{3n+3} + 63 x_{n+2} - 2643 x_{n+1}]

$$ightharpoonup \frac{1}{110}[387860x_{3n+4} - 9240x_{3n+5} + 1163580x_{n+2} - 27720x_{n+3}]$$

$$\rightarrow \frac{1}{881} [73962x_{3n+3} - 40y_{3n+5} + 221886x_{n+1} - 120y_{n+3}]$$

$$\rightarrow \frac{1}{21}[1762x_{3n+3} - 40y_{3n+4} + 5286x_{n+1} - 120y_{n+2}]$$

$$\qquad 42x_{3n+3} - 40y_{3n+3} + 126x_{n+1} - 120y_{n+1}$$

5. Each of the following expressions represents a bi-quadratic integer

$$\rightarrow$$
 42 x_{4n+4} - 40 y_{4n+4} + 168 x_{2n+2} - 160 y_{2n+2} + 6

$$\triangleright$$
 1762 x_{4n+5} - 1680 y_{4n+5} + 7048 x_{2n+3} - 6720 y_{2n+3} + 6

$$\rightarrow$$
 3522 x_{4n+5} - 80 y_{4n+6} + 14088 x_{2n+3} - 320 y_{2n+4} + 6

$$\rightarrow$$
 3526 x_{4n+5} - 84 x_{4n+6} + 14104 x_{2n+3} - 336 x_{2n+4} + 6

$$> 2x_{4n+5} - 80y_{4n+4} + 8x_{2n+3} - 320y_{2n+2} + 6$$

$$\rightarrow \frac{1}{991}[42x_{4n+6} - 70520y_{4n+4} + 168x_{2n+4} - 282080y_{2n+2} + 5286]$$

6. Each of the following expressions represents a quintic integer

$$\rightarrow$$
 42 x_{5n+5} - 40 y_{5n+5} + 210 x_{3n+3} - 200 y_{3n+3} + 420 x_{n+1} + 400 y_{n+1}

$$> 1762x_{5n+6} - 1680y_{5n+6} + 8810x_{3n+4} - 8400y_{3n+4} + 17620x_{n+2} - 16800y_{n+2}$$

$$\rightarrow \frac{1}{21} [73962x_{5n+6} - 1680y_{5n+7} + 369810x_{3n+4} - 8400y_{3n+5} + 739620x_{n+2} - 16800y_{n+3}]$$

$$= \frac{1}{231} \left[462x_{5n+6} - 18480y_{5n+5} + 2310x_{3n+4} - 92400y_{3n+3} + 4620x_{n+2} - 184800y_{n+1} \right]$$

$$> \frac{1}{110} [387860x_{5n+6} - 9240x_{5n+7} + 1939300x_{3n+4} - 46200x_{3n+5} + 3878600x_{n+2} - 92400x_{n+3}]$$

$$\triangleright$$
 84 $x_{5n+5} - 2x_{5n+6} + 420x_{3n+3} - 10x_{3n+3} + 840x_{n+1} + 20x_{n+2}$

REMARKABLE OBSERVATIONS:

1. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of straight line which are presented in the table 2 below:

Table 2: Straight Line

S.No	Straight Line	(X,Y)
1.	21X = Y	$X = 84x_{n+1} - 2x_{n+2}$
		$Y = 1763x_{n+1} - x_{n+3}$
2.	21X = Y	$X = 42x_{n+1} - 40y_{n+1}$
		$Y = 1763x_{n+1} - x_{n+3}$
3.	21X = Y	$X = 42x_{n+1} - 40y_{n+1}$
		$Y = 1762x_{n+1} - 40y_{n+2}$
4.	881X = 21Y	$X = 1762x_{n+1} - 40y_{n+2}$
		$Y = 73962x_{n+1} - 40y_{n+3}$
5.	110X = 881Y	$X = 73962x_{n+1} - 40y_{n+3}$
		$Y = 387860x_{n+2} - 9240x_{n+3}$
6.	21X = 10Y	$X = 387860x_{n+2} - 9240x_{n+3}$
		$Y = 462x_{n+2} - 18480y_{n+1}$
7.	231X = Y	$X = 1762x_{n+2} - 1680y_{n+2}$
		$Y = 462x_{n+2} - 18480y_{n+1}$
8.	21X = Y	$X = 1762x_{n+2} - 1680y_{n+2}$
		$Y = 73962x_{n+2} - 1680y_{n+3}$
9.	881X = 21Y	$X = 73962x_{n+2} - 1680y_{n+3}$
		$Y = 42x_{n+3} - 70520y_{n+1}$
10.	21X = 881Y	$X = 42x_{n+3} - 70520y_{n+1}$
		$Y = 1762x_{n+3} - 70520y_{n+2}$

2. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbola which are presented in the Table 3 below:

Table: 3 Hyperbolas

S. No	Hyperbola	(X,Y)
1	$110X^2 - Y^2 = 440$	$(84x_{n+1}-2x_{n+2},)$
		$(21x_{n+2} - 881x_{n+1})$
2	$440X^2 - 441Y^2 = 776160$	$(1763x_{n+1}-x_{n+3},)$
		$(x_{n+3} - 1761x_{n+1})$
3	$11X^2 - 4410Y^2 = 19404$	$(1762x_{n+1} - 40y_{n+2},)$
		$(2y_{n+2} - 88x_{n+1})$

4	$X^2 - 110Y^2 = 48400$	$(387860x_{n+2} - 9240x_{n+3},)$
		\setminus 881 x_{n+3} - 36981 x_{n+2} /
5	$X^2 - 110Y^2 = 213444$	$(462x_{n+2} - 18480y_{n+1},)$
		$1762y_{n+1} - 44x_{n+2}$
6	$11X^2 - 10Y^2 = 44$	$(1762x_{n+2} - 1680y_{n+2},)$
		$1762y_{n+2} - 1848x_{n+2}$
7	$4851X^2 - 4410Y^2 = 8557164$	$(73962x_{n+2} - 1680y_{n+3},)$
		$1762y_{n+3} - 77572x_{n+2}$
8	$11X^2 - 10Y^2 = 34151084$	$(42x_{n+3} - 70520y_{n+1},)$
		$(73962y_{n+1} - 44x_{n+3})$
9	$4851X^2 - 4410Y^2 = 8557164$	$(1762x_{n+3} - 70520y_{n+2},)$
		$\sqrt{73962}y_{n+2} - 1848x_{n+3}$
10	$11X^2 - 10Y^2 = 44$	$(73962x_{n+3} - 70520y_{n+3},)$
		$\left(73962y_{n+3} - 77572x_{n+3} \right)$
11	$X^2 - 110Y^2 = 484$	$(21y_{n+2} - 881y_{n+1},)$
		$(84y_{n+1} - 2y_{n+2})$
12	$X^2 - 110Y^2 = 853776$	$(21y_{n+3} - 36981y_{n+1},)$
		$\sqrt{3526y_{n+1}-2y_{n+3}}$

3. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of parabolas which are presented in the Table: 4 below:

Table: 4 Parabolas

S. No	Parabola	(X,Y)
1	$110X - Y^2 = 220$	$(84x_{2n+2}-2x_{2n+3},)$
		$(21x_{n+2} - 881x_{n+1})$
2	$11X - 210Y^2 = 462$	$ \begin{pmatrix} 1762x_{2n+2} - 40y_{2n+3}, \\ 2y_{n+2} - 88x_{n+1} \end{pmatrix} $
3	$9691X - 10Y^2 = 17075542$	$\begin{pmatrix} 73962x_{2n+2} - 40y_{2n+4}, \\ 42y_{n+3} - 77572x_{n+1} \end{pmatrix}$
4	$X - Y^2 = 220$	
5	$21X - 10Y^2 = 9702$	$\begin{pmatrix} 462x_{2n+3} - 18480y_{2n+2}, \\ 1762y_{n+1} - 44x_{n+2} \end{pmatrix}$
6	$11X - 10Y^2 = 22$	
7	$231X - 10Y^2 = 9702$	$\binom{73962x_{2n+3} - 1680y_{2n+4}}{1762y_{n+3} - 77572x_{n+2}}$
8	$9691X - 10Y^2 = 17075542$	$\begin{pmatrix} 42x_{2n+4} - 70520y_{2n+2}, \\ 73962y_{n+1} - 44x_{n+3} \end{pmatrix}$
9	$231X - 10Y^2 = 9702$	
10	$11X - 10Y^2 = 22$	$ \begin{pmatrix} 73962x_{2n+4} - 70520y_{2n+4}, \\ 73962y_{n+3} - 77572x_{n+3} \end{pmatrix} $
11	$X - 10Y^2 = 22$	
12	$42X - 10Y^2 = 38808$	

4. Consider $p = x_{n+1} + y_{n+1}$, $q = y_{n+1}$ Note that p > q > 0 Treat p, q as the generators of the Pythagorean triangle T(X, Y, Z) where X = 2pq, $Y = p^2 - q^2$, $Z = p^2 + q^2$.

Then the following results are obtained:

$$11X - 5Y - 6Z + 11 = 0$$

- a) $\frac{2A}{P} = x_{n+1}y_{n+1}$, where A = area and P = perimeter.
- b) $3\left(X \frac{4A}{P}\right)$ is a nasty number.
- c) $X \frac{4A}{P} + Y$ is written as the sum of two squares.

Formation of sequence of Diophantine 3-tuples

Consider the solution to (1) given by

$$x_0 = 1, y_0 = 22$$

It is observed that

$$x_0y_0 + k^2 + 42k - 21 = (k + 21)^2$$
, a perfect square.

Therefore, the pair (x_0, y_0) represents Diophantine 2-tuples with property $D(k^2 + 42k - 21)$.

If c is the 3^{rd} tuple, then it satisfies the system and double equations,

(7)
$$21c + k^{2} + 42k - 21 = p^{2}$$

$$22c + k^{2} + 42k - 21 = q^{2}$$
(8)

Eliminating c between (7) and (8), we have

$$22p^2 - 21q^2 = k^2 + 42k - 21$$
(9)

Taking

$$p = X + 21T q = X + 22T$$
(10)

in (9) and simplifying, we get

$$X^2 = 21 + 22T^2 + k^2 + 42k - 21$$

which is satisfied by

$$T = 1, X = k + 21$$

In view of (10) and (7), it is seen that

$$c = 2k + 85$$

Note that (21,22,2k+85) represents Diophantine with property $D(k^2+42k-21)$

This property of obtaining sequences of Diophantine 3-tuples with this property $D(k^2 + 42k - 21)$ is illustrated below:

Let M be a 3×3 nmatrix given by

$$M = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$

Now,
$$(21 22 2k + 85)M = (21 2k + 85 4k + 190)$$

Note that

$$21(2k + 85) + k^{2} + 42k - 21 = (k + 42)^{2}$$

$$21(4k + 190) + k^{2} + 42k - 21 = (k + 63)^{2}$$

$$(2k + 85)(4k + 190) + k^{2} + 42k - 21 = (3k + 127)^{2}$$

∴ The triple (21 2k + 85 4k + 190) represents Diophantine 3 – tuple with the property $D(k^2 + 42k - 21)$. The repletion of the above process leads to sequences of Diophantine 3 – tuples whose general form(21, c_{s-1} , c_s) is given by

$$(21, 21s^2 + 2(s-1)k + 1, 21s^2 + 2(k+21)s + 22), s = 1,2,3...$$

A few numerical illustrations are given in the table below:

Table 5: Numerical Illustrations

k	(21.	c_0 ,	<i>c</i> ₁)	(21.	<i>c</i> ₁ ,	$c_2)$	(21	. <i>c</i> ₂ ,	c ₃)	$D(k^2 + 42k - 21)$
0	(21,	22,	85)	(21,	85,	190)	(21,	190,	337)	D(-21)
1	(21,	22,	87)	(21,	87,.	194)	(21,	194,	343)	D(22)
2	(24,	22,	89)	(21,	89,	198)	(21,	198,	349)	D(67)

It is noted that the triple $(c_{s-1}, c_s + 21, c_{s+1})$, s = 1,2,3... forms an arithmetic progression.

In a similar way, one may generate sequences of Diophantine 3-tuples with suitable property through the other solutions to (1).

REFERENCES

- [1] Banumurthy.T.S., (1995)A Modern Introduction to Ancient Indian Mathematics, Wiley Eastern Limited, London.
- [2] Carmichael, R.D., (1950)The Theory of Numbers and Diophantine Analysis, Dover Publications, New York.
- [3] Dickson. L. E., (1952)History of The Theory of Numbers, Vol.II, Chelsia Publicating Co, New York.
- [4] Mordell, L.J., (1969) Diophantine Equations, Acadamic Press, London.
- [5] Nigel, P.Smart., (1999) The Algorithm Resolutions of Diaphantine eqations, Cambridge University, Press, London.
- [6] Telang ,S.G., (1996) Number theory, Tata Mc Graw-Hill Publishing Company, NewDelhi.
- [7] Gopalan, M.A., and Parvathy, G., (2010) "Integral Points On The Hyperbola $x^2 + 4xy + y^2 2x 10y + 24 = 0$," Antarctica J.Math, Vol 1(2), 149-155.
- [8] Gopalan, M.A., Gokila, K., and Vidhyalakahmi, S., (2007) "On the Diophantine Equation $x^2 + 4xy + y^2 2x + 2y 6 = 0$ ", Acta Ciencia Indica, Vol. XXXIIIM No2, p. 567-570.
- [9] Gopalan, M.A., Vidhyalakahmi, S., and Devibala, S., (2007) On The Diophantine Equation $3x^2 + xy = 14$, Acta Ciencial Indica, Vol. XXXIII M.No2, P.645-646.
- [10] Gopalan.M.A., and Janaki.G., (2008) "Observations on $x^2 y^2 + x + y + xy = 2$ ", Impact J.Sci., Tech, Vol2(3)p.14, 3-148.
- [11] Gopalan.M.A., and., Shanmuganadham,P.,and Vijayashankar,A., (2008) "On Binary Quadratic Equation $x^2 5xy + y^2 + 8x 20y + 15 = 0$ ", Acta Ciencia Indica,Vol . XXXIVM. No.4,p.1803-1805c.
- [12] Mollion, R.A., (1998) "All Solutions of the Diophatine Equations $X^2 DY^2 = n$ ", Far East J, Math. Sci., Speical Volume, Part III, p. 257-293.
- [13] Gopalan.M.A, Vidhyalakahmi.S and Premalatha.E, Observations On the Binary Quadratic Diophantine Equation $y^2 = 8x^2 + 8x + 16y^2 = 8x^2 + 8x + 16$, International Journal Of Latest Research in Science and Technology, Vol.1, No(4), Pp 379-382, Nov-Dec 2012.

- [14] Gopalan.M.A, Vidhyalakahmi.S and Premalatha.E, On the non-homogeneous binary quadratic equation $x^2 3xy + y^2 + 2x = 0$, International journal of Engineering & Scientific Research, Vol 2, issue 2, Pp 83-88, Feb 2014.
- [15] Gopalan.M.A, Vidhyalakahmi.S, Premalatha.E and Vanitha.M, Observation on the hyperbola $y^2 = 220x^2 + 9$, Star Research Journal, Vol.4, issue 3(2), Pp 6-10, March 2016.
- [16] Gopalan.M.A, Vidhyalakahmi.S, Premalatha.E and Sofia Christinal.S, On the negative pell equation $y^2 = 72x^2 8$, International Journal of Emerging Technologies in Engineering Research, Vol 4,issue 2, Pp 25-28, Feb 2016.
- [17] Gopalan.M.A, Vidhyalakahmi.S, Premalatha.E and Janani.R, On the negative pell equation $y^2 = 33x^2 8$, International Journal of Multidisciplinary Research and Modern Education, Vol 2,issue 1, Pp 95-100, 2016.
- [18] Gopalan.M.A, N. Anusheela and Shreemathi Adiga, Observation on the negative pell equation $y^2 = 90x^2 36$, International Journal of Latest Research in Science and Technology, Vol 7, issue 3, Pp 24-26, 2018.
- [19] Vidhyalakahmi.S, Premalatha.E and Maheshwari . D, On the non homogeneous binary quadratic equation $4x^2 3y^2 = 37$, Bulletin of Pure and Applied Sciences- Mathematics and Statistics, Vol 38E,issue 1, Pp 324-328, 2019.
- [20] J.Shanthi, R.Maheswri, M.A.Gopalan, V.Tamilselvi, Journal of Scientific computing, Peer Reviewed Impact factor-6.1 ISSN NO 1524-2560, , A Peer Search on Integral, Solutions to Non-Homogeneous Binary Quadratic Equation $15x^2 2y^2 = 78$, vol 9, Issue 3, 2020,Pg No.108-131.
- [21] R.Maheswari, V.Anbuvalli, M.A.Gopalan, V.Vidhya, ON THE INTEGRAL SOLUTIONS OF HYPERBOLA $8x^2 3y^2 = 45$, Journal of Engineering Computing Architecture, Vol 10, Issue 3, 2020, Pg. No 1575- 1594.