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ABSTRACT 

          This work is devoted to studying asymptotic distributions of the central variation members 

in random sampling volume numbers. However, this does not imply the independence of the 

observed values of the aggregate as a whole from the sample size. 

  

 Keywords: random value, variation series, sample volume, central members of the variation series, 

asymptotic distribution.  

 

INTRODUCTION 

            Let  a sequence of independent random values (r.v.) with general 

function of distribution (d.f.)
 

 and - a variation series (v.s.)  

built according to the r.v.  

 The relationship  is called the rank of a member . If at , 

then  is called the limit rank of the sequence ( )n

k . Members  for which  a non-zero and 

one is called the central members of the v.s., and  members for which the maximum rank 

or  is called the extreme members of the v.s. 

            Variation series is the starting point for many applications, and the concept itself is widely 

used in mathematical statistics and other fields of knowledge. Therefore, a large number of work 

is devoted to studying the distribution of members of the variation series. The complete results, 

completing the theory of the maximum distribution of members of v.s., were obtained in works by 

B.V.Gnedenko [1], N.V.Smirnov [2], and D.M.Chibisov [3]. 

             In the classical mathematical statistics and the studies of the above authors, the sample 

size on which the variation series is formed is considered deterministic. 

             Random sample size appears in statistical tasks of the theory of reliability, theory of mass 

service, sequential analysis, etc. In this paper, we study the asymptotic distributions of the central 

members of the variation series when the sample size itself is a random value, i.e., the 

characteristics of the aggregate considered were observed (due to some circumstances) in the 

random number of tests. This situation was often found in practice and was more general than a 

deterministic case where observations were considered non-random. At the same time, the random 
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sample size might be independent (call this case "independent scheme"), and in some cases, 

dependent on the observed values themselves (call this case "dependent scheme"). 

 

MATERIALS AND METHODS 

            Studies of asymptotic distributions of members in the v.s. at random sample size in the 

"dependent scheme," as opposed to the "independent scheme", were very difficult. These studies 

were based on the concept of mixing in the sense of A.Reni [4], which has a wide field of 

application. 

RESULTS 

           Consider the variation series randomly constructed sample 

 of the total population with (d.f.)  Here and on - positive integer 

sequence random value. 

           Moreover, a detailed study of the maximum distribution of the central members of the range 

of variations at the deterministic sample volume seemed to begin with the work of N.V.Smirnov 

[2]. He showed that the class of possible limit allocations for the appropriately centrally and 

rationed central members of the v.s. consisted of four different types of allocations.
 
 

           In work [2] under
                (1)  

found necessary and sufficient conditions to satisfy the d.f. , that belonged to the area of 

attraction of a certain marginal law of distribution, i.e., appropriate permanent selection 

 the ratio of  
at all points of contiguity 

of limit f.d.  

           If you did not make an additional limit (1) on the rate of decrease to zero , the same 

d.f.  might be belonging to different areas of attraction (see [2], h.1). However, in assumption 

(1), it was possible to distinguish the areas of attraction, which depended only on the nature of the 

d.f.
 

.
 

          If condition (1) is fulfilled, it is referred to as "normal - gravity" and, accordingly, the 

areas of normal  - gravity.  
          In work [2] it was established that the class of possible limit laws of distributions that might 

have areas of normal  - gravity for the appropriately centrally and rationalized central members 

of the v.s. was limited to the following four types of distributions: 

           2.     
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3.               4.   
   

            The parameter  took any positive value. 

          All of these distribution types were , and functions 

 had one of the following types:

          (2) 

 In this work, the following lemma, which we would use, was an essential place in the 

research of work [2].  

Lemma [2]. If the member's rank numbers (i.e., k (left) and n-k+1 (right) at the same time 

increased indefinitely, then 

 evenly aspire to zero. Here 

 
           From this lemma directly followed that to perform the ratio 

 was necessary and sufficient to 
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by an equation   

 In this paper, we would present the R- mixing property for the central members of the v.s. 

and examine the central members' maximum distribution in case a random number of observations 

forms the v.s. 

 Let - the sequence of positive integers of r.v. and the sequence of the central members 

of the v.s. still satisfy the condition of regular attraction (1).
 

            
The following theorems were fair.
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Theorem 1. Let, with the proper selection of permanent  

, where  has one possible type (2). Then the sequence 

of the r.v.  possesses property R – mixing with the ultimate f.d. , i.e., for any 

event , с   

. 

 Theorem 2. Let, with the proper selection of permanent  with be 

executed: 

          А)    и   

          В)     , where   - r.v. 

         In this case, when   

           С)   , where a function  had one 

of the possible forms. 

 The main result of work [5] was the statement C) proved in the assumptions of 

independence  from  and weak convergence  to some positive r.v. 

            It should be noted here that for proof of the type 2 theorems, in case of arbitrary dependence 

of the random volume  from the original r.d.  condition B), in general, cannot be replaced 

by a condition of weak convergence of the sequence  to the positive r.d.  (see [6]). 

           Theorem 2 summarized and clarified the results of work [7], which studied the limit 

distribution of quantile order (0<p<1) in case of random 

sample size. The following condition is applied to the sequence 

 

           Theorem 1 and 2 evidence waws based on the following two lemmas, which were of self-

interest. 

 Let for each  and fixed  performance indicator  i.e. 
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      where  some sequence of valid integers 

Let's  

 Lemma 1. If for a sequence of valid integers , and sequence of 

r.v.  possessed the property of R- mixing with ultimate f.d. , i.e., for any 

event  А  с  Р(А)>0  

 

            Lemma 2. If for a sequence of valid integers 

 

 where  - r.v., and sequence of r.v.  

possessed the property of R-mixing with the ultimate f.d.  . 

  

             Proof of the Theorem 1 

 Let А – an arbitrary event with a positive probability. According to the ratio
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           according to the results of [1] 

 

            were selected so that, where  

 

               

0, ,

1 , ,

k n n

nk

k n n

если X a x b
I

если X a x b

 +
= 

 +
0 ,n na b −

  1 21 ( ); 1 ... .n nk n n n n nj n n njp P I F a x b q p и S I I I= = = + = − = + + +

  , limn n n n
n

k k p q
→

= 

nnk n n

n n n

S k p

k p q

 − 
 
  

( )x

lim / ( ).nnk n n

n
n n n

S k p
P y A y

k p q→

 − 
 = 

  

  0, lim 0,
p

n
n n n n

n
n

k k p q и
k




→
=  →  0

nn n n

n n n

S p

p q

 



 − 
 
  

( )x

( )   ( ) ,
n

k nx S x k  = 

 
( )

( )
/ ( ) ( ) /

( ) ( ) ( ) ( )
/ .

( )(1 ( )) ( )(1 ( ))

n

k n n

n n n

n

n n n n
n n n

n n n n

b
P x A P S a x b k n A

a

S y nF y nF y k n
P A где y a x b

nF y F y nF y F y

 − 
 = +  = 

  

 − − 
=  − = + 

− −  

( )
( )

( )
( )

n

k n n

n

b
P x u x

a

 − 
 → 

  

( )
lim ( ) 0,

(1 )

n
n n

n

F y
n u x и a b



 →

−
= 

−
n→

( ) , (0 1).n nF a x b  + →  

n→



Igamnazar N. Mamurov1 

 

4631 
 

           For this reason, using Lemma 1 we would get

 

       The theorem is proven. 

 

 Proof of Theorem 2 

          Again using the ratio (**), we could write the following:  

      (3) 

           As it was noted in the proof of theorem 1, when fulfilling the condition
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                             (6) 

            It was easy to verify that under condition B)  

           Then applying the theorem 1.2.2 [10] on the similarity to the sequence 

 

           taking into account the ratio (1) and (4), we get 
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  Where effective (9), condition (B) 

    and according to (1) and theorems 1.2.2 [10]

  

Of (10) with Lemma 2 for
  when   we would get 

 

      Similar reasoning for  had when
   

 

      Having collected all the cases considered, we would be convinced of the fairness of the ratio 

 

Тheorem proved. ■ 

 

DISCUSSION 

Following B.Gnedenko and H.Fahim's [8] theorems, in which a limit distribution exists for 

a deterministic sequence and under appropriate additional conditions, the existence of a limit 

distribution for sequences with a random index is approved, we should call theorems of transfer. 

In the preface to the monograph by V.M.Kruglov, V.Y.Korolev [9], written by 

B.V.Gnedenko, the importance, and necessity of studies on transfer theories is indicated. Proving 

in this work, theorem 2 was a generalization and addition of the transfer theorem for the central 

members of the variation series of a random sample in an "independent scheme" to the level of 

"dependent scheme." 

 

CONCLUSION 

          As a result of the study of asymptotic distributions of the central members of the variation 

series at random sample size for the case of "dependent scheme":  

             1.We set the properties of mixing the sequence of central members with deterministic and 

random sample volumes, which was of self-interest. 

2. Proved transfer theorem for the central members of the various series in the "dependent 

scheme," which was more general and peculiar than "independent scheme." 
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