On rnp-open sets in nano topological spaces

Turkish Online Journal of Qualitative Inquiry (TOJQI) Volume 12, Issue 8, July 2021: 3034-3045

On rnp-open sets in nano topological spaces

J.B.Toranagatti

Department of Mathematics, Karnatak University's Karnatak Arts College, Dharwad-580001, India. jagadeeshbt2000@gmail.com

Abstract

The notion of rnp-open sets in nano topological spaces is introduced.Some properties and characterizations of rnp-open sets are established. Also,a new class of continuity called rnp-continuity is introduced and its properties are investigated.

Keywords: nano preopen, nano preclosed, rnp-open, rnp-closed, rnp-continuity, nano pre continuity.

2020 Mathematics Subject Classification: 54A05;54C10; 54B05

1. Introduction

M.L.Thivagar and C.Richard[7] initiated the study of nano topology by using theory approximation and boundary region of a subset of an universe in terms of an equivalence relation on it. They have also defined nano-interior and nano-closure in a nano topological spaces. In this paper,we introduce and study a new class of sets called rnp-open sets. Also, some properties of rnp-continuous functions are obtained.

2. Preliminaries

Definition 2.1[4] Let U be a non-empty finite set of objects, called the universe, and \Re be an equivalence relation on U named as the indiscernible relation. The pair (U,\Re) is said to be the approximation space. Let $Y \subseteq U$.

(i) The lower approximation of Y with respect to \Re is $L_{\Re}(Y) = \bigcup_{y \in U} \{ \Re(y) : \Re(y) \subseteq Y \}$

where $\Re(y)$ denotes the equivalence class determined by $y \in U$.

(ii) The upper approximation of Y with respect to \Re is $H_{\Re}(Y) = \bigcup_{y \in U} \{ \Re(y) : \Re(y) \cap Y \neq \phi \}$.

(iii) The boundary region of Y with respect to \Re is $B_{\Re}(Y) = H_{\Re}(Y)/L_{\Re}(Y)$.

3034

Definition 2.2[7] In the approximation space (U, \Re) , let $X \subseteq U$. Then

 $\mathfrak{I}_{\mathfrak{R}}(X) = \mathfrak{R}^{T} = \{ U, \phi, L_{\mathfrak{R}}(X), H_{\mathfrak{R}}(X), B_{\mathfrak{R}}(X) \}$ forms a topology on U and it is called as the nano topology with respect to X. The pair (U, \mathfrak{R}^{T}) is called nano topological space.

Elements of \aleph^T are known as the nano open(briefly,n-open) sets and the relative complements of nano open sets are called nano closed(briefly,n-closed) sets.

Throughout this paper, the word "NTS" mean an arbitrary nano topological space (U, \aleph^T) .

Let $M_1 \subseteq U$, then $\aleph cl(M_1) = \bigcap \{G: M_1 \subseteq G \text{ and } G^c \in \mathfrak{I}_{\mathfrak{R}}(X)\}$ is the nano closure of M_1 and $\aleph int(M_1) = \bigcup \{H: H \subseteq M_1 \text{ and } H \in \mathfrak{I}_{\mathfrak{R}}(X)\}$ is the nano interior of M_1 .

Definition 2.3[3,5,7] A subset M_1 in (U, \aleph^T) is said to be:

- (i) nano b-open(briefly,nb-open) if $M_1 \subseteq \&cl(\&int(M_1)) \cup \&int(\&cl(M_1))$,
- (ii) nano preopen(briefly,np-open) if $M_1 \subseteq \text{Kint}(\text{Kcl}(M_1))$,
- (iii) nano regular open(briefly,nr-open) if $M_1 = \Re int(\Re cl(M_1))$,
- (iv) nano α -open(briefly,n α -open) if $M_1 \subseteq \alephint(\aleph cl(\aleph int(M_1)))$.
- (iv) nano semiopen(briefly,ns-open) if $M_1 \subseteq \&cl(\&int(M_1),$

(v) nano β -open(briefly,n β -open) if $M_1 \subseteq \&cl(\&int(\&cl(M_1)))$.

The complements of the above respective open sets are their respective closed sets.

The family of all n-open(resp.,n-closed,np-closed,np-open, nb-open and nb-closed) sets of (U, \aleph^T) is denoted by $\aleph O(U)$ (resp., $\aleph C(U)$, $\aleph PC(U)$ (resp., $\aleph PO(U)$, $\aleph BO(U)$ and $\aleph BC(U)$).

Theorem 2.4 If M_1 and M_2 be any subsets in (U, \aleph^T) . Then:

 $(1) M_1 \cap \textup{\texttt{Kcl}}(M_2) \subseteq \textup{\texttt{Kcl}}(M_1 \cap M_2) \text{ if } M_1 \text{ is n-open.}$

 $(2) \texttt{Xint}(M_1 \ \cup \ M_2) \subseteq M_1 \cup \ \texttt{Xint}(M_2) \text{ if } M_2 \text{ is n-closed.}$

Definition 2.5[1] If K is a subset in (U, \aleph^T) , then:

 $\Re pcl(K) = \bigcap \{ B : B^c \in \aleph^T \text{ such that } K \subseteq B \}$

 $\Re pInt(K) = \bigcup \{ G: G \in \aleph^T \text{ such that } G \subseteq K \}$

Theorem 2.6 For a subset K in (U, \aleph^T) ,

(i) $\Re pcl(K)$ is the smallest np-closed superset of K and $\Re pint(K)$ is the largest np-open subset of K.

(ii) K is np-closed if and only if $K = \Re pcl(K)$ and K is np-open if and only if $K = \Re pint(K)$.

Theorem 2.7[3] For a subset K in (U, \aleph^T) ,

- (i) \Re bcl(K) is the smallest nb-closed superset of K.
- (ii) K is nb-closed if and only if K = &bcl(K).

Definition 2.8[2, 3] A function $\ell:(U_1, \mathfrak{I}_{\mathfrak{R}}(X))) \rightarrow (U_2, \mathfrak{I}_{\mathfrak{R}}(Y))$ is called:

- (i) np-continuous if $\ell^{-1}(K) \in \Re PO(U_1)$ for every $K \in \mathfrak{IR}(Y)$,
- (ii) nb-continuous if $\ell^{-1}(K) \in \mathsf{NBO}(U_1)$ for every $K \in \mathfrak{IR}(Y)$.

3.More properties of nano pre-closed sets:

In this section, we give additional results on np-open and np-closed sets which would be useful in our later section.

Theorem 3.1 In a NTS (U, \aleph^T) , let M \subseteq U. Then:

(1) $\operatorname{\alephpcl}(M) = M \cup \operatorname{\alephcl}(\operatorname{\alephint}(M)).$

(2) \aleph scl(M) = M $\cup \aleph$ int(\aleph cl(M)).

(3) $\&bcl(M) = M \cup [\&cl(\&int(M)) \cap \&int(\&cl(M))].$

Proof:(1)Since ℵpcl(M) is np-closed,

 $\&cl(\&int(M)) \subseteq \&cl(\&int(\&pcl(M)) \subseteq \&pcl(M).....(I)$

On the otherhand we have

 $\label{eq:cl(&int(M))} \& cl(&int(M))) \subseteq \& cl(&int(K) \cup \& cl(&int(M))) \\ by Theorem 2.17$

= & cl(& cl(& int(M)))= & cl(& int(M)) $\subseteq M \cup \& cl(\& int(M).....(I))$

Therefore $M \cup \&cl(\&int(M) \text{ is a np-closed superset of } M \text{ it follows that}$

 $\aleph pl(M) \subseteq M \cup \aleph cl(\aleph int(M).....(II))$

By (I) and (II), $\Re pcl(M) = M \cup \Re cl(\Re int(M))$.

The other results can be proved similarly.

Corollary 3.2 In a NTS (U, \aleph^T) , let M \subseteq U. Then:

(1) $\operatorname{Npint}(M) = M \cap \operatorname{Nint}(\operatorname{Ncl}(M)).$

(2) $\Re sint(M) = M \cap \Re cl(Nint(M)).$

(3) $\operatorname{kpint}(M) = M \cap [\operatorname{kint}(\operatorname{kcl}(M)) \cup \operatorname{kcl}(\operatorname{kint}(M))].$

Theorem 3.3 In a NTS (U, \aleph^T) , let M \subseteq U. Then:

 $\operatorname{Kint}(\operatorname{Kcl}(\operatorname{Kpcl}(M)) = \operatorname{Kint}(\operatorname{Kcl}(M)).$

Proof: We have $\operatorname{Nint}(\operatorname{Ncl}(\operatorname{Mpcl}(M)) = \operatorname{Nint}(\operatorname{Ncl}(M \cup \operatorname{Ncl}(\operatorname{Nint}(M))))$

 $= \texttt{Xint}(\texttt{Ncl}(M) \ \cup \ \texttt{Xcl}(\texttt{Xint}(M)))$

= int((M))

Theorem 3.4 In a NTS (U, \aleph^T) , let $M \subseteq U$. Then $\Re pint(\Re pcl(M)) = \Re pcl(M) \cap \Re int(\Re cl(M))$.

Proof: We have $\Re pint(\Re pcl(M)) = \Re pcl(M) \cap \Re int(\Re cl(\Re pcl(M)))$

By Theorem 3.3, $\Re pint(\Re pcl(M)) = \Re pcl(M) \cap \Re int(\Re cl(M))$

Theorem 3.5 [3] In a NTS (U, \aleph^T) , let $M \subseteq U$. Then $\aleph bcl(M) = \aleph pcl(M) \cap \aleph scl(M)$.

Theorem 3.6 In a NTS (U,\aleph^T) , let $M \subseteq U$. Then $\Re pint(\Re pcl(M)) = \Re pint(\Re bcl(M))$.

Proof: By Theorem 3.4, we have $\Re pcl(M) = \Re pcl(M) \cap \Re int(\Re cl(M))$

 $\subseteq \aleph pcl(M) \cap (M \cup \aleph int(\aleph cl(M)).$

 $= \ \ \text{\&pcl}(M) \cap (\ \ \text{\&pcl}(M)).$

= &bcl(M).

Therefore, $\Re pint(\Re pcl(M)) \subseteq \Re pint(\Re bcl(M))$ and reverse inclusion is obvious

Definition 3.7 [6] A subset K in (U, \aleph^T) is said to be nano dense if $\aleph cl(K)=U$

Theorem 3.8 In a NTS (U, \aleph^T) , every nano dense set is np-open but not conversely.

Proof:Let K be any nano dense set in (U, \aleph^T) Then $\aleph cl(K)=U$. This implies

that $\operatorname{Nint}(\operatorname{Kcl}(K))=U$ so that $K \subseteq \operatorname{Nint}(\operatorname{Kcl}(K))$. Hence K is np-open.

Example 3.9 Let $U = \{c_1, c_2, c_3, c_4\}$ with $U \setminus R = \{\{c_1\}, \{c_3\}, \{c_2, c_4\}\}$ and let $X = \{c_1, c_2\}$,

 $\aleph^{T} = \{U, \phi, \{c_1\}, \{c_1, c_2, c_4\}, \{c_2, c_4\}\}$. Then the set $\{c_1\}$ is np-open but not nano dense.

4.Nano regular pre-open sets:

Definition 4.1 A subset H in (U, \aleph^T) is said to be:

(i)regular nano preopen(briefly,rnp-open) if H = pint(pcl(H)),

(ii)regular nano preclosed(briefly,rnp-closed) if H = pcl(pint(H)).

The family of all rnp-open(resp.,rnp-closed) sets of (U, \aleph^T) is denoted by $R \aleph PO(U)$ (resp., $R \aleph PC(U)$).

Theorem 4.2 In a NTS (U, \aleph^T) , the following hold for any $M_1, M_2 \subseteq U$:

(i) If $M_1 \subseteq M_2$, then $\Re pint(\Re pcl(M_1) \subseteq \Re pint(\Re pcl(M_2)))$.

(ii) If M_1 is np-open, then $M_1 \subseteq \Re pint(\Re pcl(M_1))$.

(iii) If M_1 is np-closed, then $\operatorname{Npcl}(\operatorname{Npint}(M_1)) \subseteq M_1$.

(iv) $\Re pint(\Re pcl(M_1))$ is rnp-open.

(v) If M_1 is np-closed, then $\Re pint(M_1)$ is rnp-open.

(vi) If M_1 is np-open, then $\aleph pcl(M_1)$ is rnp-closed.

Proof:(i)Obvious.

(ii) Let M_1 be nano preopen and since $M_1 \subseteq \text{\&pcl}(M_1)$, then $M_1 \subseteq \text{\&pint}(\text{\&pcl}(M_1))$.

(iii) Let M_1 be np-closed and since $\text{Npint}(M_1) \subseteq M_1$, then $\text{Npcl}(\text{Npint}(M_1) \subseteq M_1$.

(iv) We have $\Re pint(\Re pcl(\Re pcl(M_1)) \subseteq \Re pint(\Re pcl(\Re pcl(M_1)) = \Re pint(\Re pcl(M_1))$

and $\operatorname{Npint}(\operatorname{Npcl}(M_1))) \supseteq \operatorname{Npint}(\operatorname{Npcl}(M_1)) = \operatorname{Npint}(\operatorname{Npcl}(M_1))$.

Hence $\operatorname{Npint}(\operatorname{Npcl}(M_1))) = \operatorname{Npint}(\operatorname{Npcl}(M_1))$. Hence $\operatorname{Npint}(\operatorname{Npcl}(M_1))$ is rnp-open.

(v) Suppose that $M_1 \in \&PC(U)$. By (iii), $\&pint(\&pcl(\&pint(M_1)) \subseteq \&pint(M_1))$.

On the other hand, we have $\Re pint(M_1) \subseteq \Re pcl(\Re pint(M_1) \text{ so that})$

 $\Re(M_1) \subseteq \Re(M_1)$. Therefore $\Re(M_1)$. Therefore $\Re(M_1) = \Re(M_1)$.

This shows that $\Re pint(M_1)$ is rnp-open.

(vi)Similar to (v).

Theorem 4.3 In a NTS (U, \aleph^T) , every rnp-open set is (i) np-open, (ii) nb-open, (iii) n\beta - open,

(iv) nb-closed.

Proof:(i)If K is rnp-open, then

 $K = \Re pint(\Re pcl(K) = \Re pcl(K) \cap \Re int(\Re cl(K)) \subseteq \Re int(\Re cl(K)).$

Hence K is np-open.

(ii)Let K be rnp-open, then K = pint((K)

 $= \aleph pcl(K) \cap \aleph int(\aleph cl(K))$

```
\subseteq  int( (K))
```

 $\subseteq \operatorname{\alephint}(\operatorname{\alephcl}(K)) \cup \operatorname{\alephcl}(\operatorname{\alephint}(K)).$

Hence K is nb-open.

(iii) If K is rnp-open, then K = pint(

 $= \aleph pcl(K) \cap \aleph int(\aleph cl(K))$

```
\subseteq \operatorname{Kint}(\operatorname{Kcl}(K))
```

```
\subseteq \aleph cl(\aleph int(\aleph cl(K))).
```

Therefore, K is $n\beta$ -open.

(iv) Let K be rnp-open, then K = pint(

 $= \aleph pcl(K) \cap \aleph int(\aleph cl(K))$ $= [K \cup \aleph cl(\aleph int(K)] \cap \aleph int(\aleph cl(K)))$ $= [K \cap \aleph int(\aleph cl(K)] \cup [\aleph cl(\aleph int(K) \cap \aleph int(\aleph cl(K))])$ $= K \cup [\aleph cl(\aleph int(K) \cap \aleph int(\aleph cl(K))] \text{ since } K \text{ is np-open}$ $= \aleph bl(K)$

Hence K is nb-closed.

The following Example shows that every np-open(hence nb-open and n β -open) set need not be a rnp-open set.

Example 4.4 The set $\{c_1, c_2\}$ in Example 3.9 is np-open but it is not rnp-open.

Theorem 4.5 In (U, \aleph^T) , every nr-open set is rnp-open but not conversely.

Proof:Let K be any nr-open set. By Theorem 3.4, $\Re pint(\Re pcl(K) = \Re pcl(K) \cap \Re int(\Re cl(K))) = \Re pcl(K) \cap K = K$. Hence K is rnp-open.

Example 4.6 The set $\{c_2\}$ in Example 3.9 is rnp-open but it is not nr-open.

Definition 4.7 A NTS (U, \aleph^T) is called nano partition if NO(U) = NC(U).

Theorem 4.8 Let (U, \aleph^T) be a a nano partition space, then every np-open set is rnp-open.

Remark 4.9 The class of rnp-open sets is not closed under finite union as well as finite intersection as shown in Example 4.10.

Example 4.10 Consider (U, \aleph^T) as in Example 3.9.

Here $\{c_1\}$ and $\{c_2\} \in R \rtimes PO(U)$ but $\{c_1\} \cup \{c_2\} = \{c_1,c_2\} \notin R \rtimes PO(U)$.

3039

Moreover, $\{c_1, c_2, c_3\}$ and $\{c_1, c_3, c_4\} \in \mathbb{R} \otimes PO(U)$ but $\{c_1, c_2, c_3\} \cap \{c_1, c_3, c_4\} =$

 ${c_1,c_3}$ ∉ RPO(U).

Theorem 4.11 Let K be a np-closed in (U, \aleph^T) , then K is np-open if and only if K is rnp-open.

Proof: Let K be a np-open set and by hypothesis, K is np-closed. Then $K = \Re pint(K)$ and

K = kpcl(K). Therefore, kpint(pcl(K)) = pint(K) = K. Hence K is rnp-open.

Other part follows from the Theorem 4.3(i)

Theorem 4.12 For a subset K in (U, \aleph^T) , the following statements are equivalent:

(i)K is rnp-open;

(ii) K is np-open and nb-closed.

Proof:(i) \rightarrow (ii):From Theorem 4.3(i,iv).

(ii) \rightarrow (i):Let K be both nb-closed and np-open. Then K = &bcl(K) and K = &pint(K).

By Theorem 3.6, $\Re pint(\Re pcl(K)) = \Re pint(\Re bcl(K)) = \Re pint(K) = K$. Hence K is rnp-open.

Definition 4.13 [6] A NTS (U, \aleph^T) is called nano submaximal if every nano dense subset of

U is n-open

Theorem 4.14 The following are equivalent for a NTS (U, \aleph^T) :

(i) (U, \aleph^T) nano submaximal;

(ii) **&PO(U)=&O(U)**.

Proof: (i) \rightarrow (ii):Let $K \subseteq U$ be np-open. Then $K \subseteq \text{\&int}(\text{\&cl}(K) = M, \text{say})$.

This implies $\aleph cl(M) = \aleph cl(K)$, so that

 $(\aleph cl((U \setminus M) \cup K) = \aleph cl(U \setminus M) \cup \aleph cl(K)$

 $= \aleph cl(U \backslash M) \cup \aleph cl(M)$

= U and thus $(U \setminus M) \cup K$ is nano dense in U.

By (i), $(U \setminus M) \cup K$ is n-open. Now, $K = ((U \setminus M) \cup K) \cap M$ which is n-open.

(ii) \rightarrow (i): Let K be a nano dense subset of U. Then $\operatorname{Nint}(\operatorname{Ncl}(K) = U$, then $K \subseteq \operatorname{Nint}(\operatorname{Ncl}(K)$ and K is np-open and hence by (ii), K is n-open. **Theorem 4.15** If a NTS (U, \aleph^T) is nano submaximal, then any finite intersection of np-open sets is np-open.

Proof: Obvious since $\otimes O(X)$ is closed under finite intersection.

Theorem 4.16 If a NTS (U, \aleph^T) is nano submaximal, then any finite in tersection of rnp-open sets is rnp-open.

Proof: Let $\{A_i:i=1,2,...,n\}$ be a finite class of rnp-open sets. Since the space (U,\aleph^T) is nano submaximal, then by Theorem 4.15, we have $\bigcap_{i=1}^{n} A_i \in \aleph PO(U)$. By Theorem 4.2(ii),

$$\bigcap_{i=1}^{n} A_{i} \subseteq \texttt{Npint}(\texttt{Npcl}(\bigcap_{i=1}^{n} A_{i}). \text{ For each } i, \text{ we have } \bigcap_{i=1}^{n} A_{i} \subseteq A_{i} \text{ and thus } \texttt{Npint}(\texttt{Npcl}(\bigcap_{i=1}^{n} A_{i}) \subseteq \texttt{Npint}(\texttt{Npcl}(A_{i}) = A_{i} \text{ as } \texttt{Npint}(\texttt{Npcl}(A_{i}) = A_{i}. \text{ Therefore } \texttt{Npint}(\texttt{Npcl}(\bigcap_{i=1}^{n} A_{i}) \subseteq \bigcap_{i=1}^{n} A_{i}.$$

In consequence, $\bigcap_{i=1}^{n} A_{i}$ is rnp-open in U.

Theorem 4.17 If (U, \aleph^T) is nano partition, then the arbitrary union of rnp-open sets is rnp-open.

Proof: It follows from the Theorem 4.8

 \downarrow

Definition 4.18 A subset M in (U, \aleph^T) is called nano ε -open if \aleph int $(\aleph cl(M)) \subseteq \aleph cl(\aleph$ int(M)).

Theorem 4.19 In a NTS (U, \aleph^T) , every ns-open set is nano ε -set but not conversely.

Proof:Let K be a ns-open set, then $K \subseteq \&cl(\&int(K)) \rightarrow \&int(\&cl(K)) \subseteq \&cl(\&int(K))$.

Hence K is nano ɛ-set.

Example 4.20 The set $\{c_3\}$ in Example 3.9 is ε -set but it is not ns-open.

Theorem 4.21 In a NTS (U, \aleph^T) , every ns-closed set is nano ε -set but not conversely.

Proof:Let K be ns-closed,then $\operatorname{Nint}(\operatorname{Ncl}(K)) \subseteq K$. Therefore $\operatorname{Nint}(\operatorname{Ncl}(K)) \subseteq \operatorname{Ncl}(\operatorname{Nint}(K))$. Hence K is nano ε -set.

 \downarrow

Example 4.22 The set $\{c_1, c_3\}$ in Example 3.9 is nano ε -set but it is not ns-closed.

DIAGRAM

 $nr\text{-}open \ \rightarrow \ n\alpha\text{-}open \ \rightarrow \ ns\text{-}open \ \rightarrow \ nano \ \epsilon\text{-}set$

 \downarrow

rnp-open \rightarrow np-open \rightarrow nb-open

Remark 4.23 The notions of nano ε -sets and rnp-open(hence np-open,nb-open)sets are independent of each other.

Example 4.24 Let (U, \aleph^T) be a NTS as in Example 3.9. Then $\{c_3\}$ is nano ε -set but not a

nb-open set and the set $\{c_1\}$ is rnp-open but it is not a ε -set.

Theorem 4.25 The following are equivalent for any subset K in (U, \aleph^T) :

(i) K is ns-open;

(ii) K is both nb-open and nano ε -set.

Proof: (i) \rightarrow (ii):Obvious

(ii) \rightarrow (i):Let K be both nb-open and nano ε -set.

 $\operatorname{Kint}(\operatorname{Kcl}(K)) \cap \operatorname{Kcl}(\operatorname{Kint}(K)) \subseteq K$ and $\operatorname{Kint}(\operatorname{Kcl}(K)) \subseteq \operatorname{Kcl}(\operatorname{Kint}(K))$.

Then \Re int(\Re cl(K)) \subseteq K and hence K is ns-open.

Theorem 4.26 The following are equivalent for any subset K in (U, \aleph^T) :

(i) K is nr-open;

(ii) K is rnp-open and nano ϵ -set.

Proof: (i) \rightarrow (ii):Obvious

(ii) \rightarrow (i):Let K be rnp-open and nano ε -set.Then,by Theorems 3.1 and 3.4,

we obtain K = $\Re pint(\Re pcl(K))$

 $= (K \cup \aleph cl(\aleph int(K)) \cap \aleph int(\aleph cl(K))$

 $= (K \cap \operatorname{\&int}(\operatorname{\&cl}(K)) \cup (\operatorname{\&cl}(\operatorname{\&int}(K)) \cap \operatorname{\&int}(\operatorname{\&cl}(K)))$

 $= (K \cap \operatorname{Nint}(\operatorname{Ncl}(K)) \cup \operatorname{Nint}(\operatorname{Ncl}(K)))$

= $\operatorname{Nint}(\operatorname{Ncl}(K))$

Therefore, $K = \Re int(\Re cl(K))$ and hence M is nr-open

Definition 4.27 In (U, \aleph^T) , let $M \subseteq U$.

(1)The rnp-interior of M, denoted by $int^{\aleph}_{rp}(M)$ is defined as

 $int_{rp}^{N}(M) = \bigcup \{ K: K \subseteq M \text{ and } M \in R \aleph PO(U) \};$

(2)The rnp-closure of M, denoted by $cl^{\aleph}_{rp}(M)$ is defined as

$$cl_{rp}^{\aleph}(\mathsf{M}) = \cap \{ F: \mathsf{M} \subseteq F \text{ and } F \in \mathsf{R} \aleph \mathsf{PC}(\mathsf{U}) \}.$$

Theorem 4.28 In (U, \aleph^T) , let $M \subseteq U$. Then the following hold:

(i)
$$int_{rp}^{\aleph}(M) \subseteq M \subseteq cl_{rp}^{\aleph}(M).$$

(ii) If M is rnp-open(rnp-closed), then $int^{\aleph}_{rp}(M) = M(resp, cl_{rp}^{\aleph}(M) = M)$.

Corollary 4.29 If in addition (U, \aleph^T) is nano partition, then the converse of Theorem 4.28(ii) is true.

5.rnp-continuous function:

In this section, the concept of rnp-continuity and their properties are investigated.

Definition 5.1 A function $\ell:(U_1, \mathfrak{I}_{\mathfrak{R}}(X)) \rightarrow (U_2, \mathfrak{I}_{\mathfrak{R}}*(Y))$ is said to be rnp-continuous

if $\ell^{-1}(H)$ is rnp-open in $(U_1, \mathfrak{I}_{\mathfrak{R}}(X))$ for each $H \in \mathfrak{I}_{\mathfrak{R}}*(Y)$.

Example 5.2 Let $U_1 = \{d_1, d_2, d_3, d_4\}$ with $U_1 \setminus \Re = \{\{d_1\}, \{d_3\}, \{d_2, d_4\}\}$

and let $X = \{d_1, d_2\}$, $\mathfrak{IR}(X) = \{U_1, \phi, \{d_1\}, \{d_1, d_2, d_4\}, \{d_2, d_4\}\}.$

Then nano rnp-open sets are U_1 , ϕ , $\{d_1\}, \{d_2\}, \{d_4\}, \{d_2, d_4\}, \{d_1, d_2, d_3\}, \{d_1, d_3, d_4\}$.

Let $U_2 = \{e_1, e_2, e_3, e_4\}$ with $U_2 \setminus \Re = \{\{e_1, e_3\}, \{e_3\}, \{e_4\}\}$ and let $Y = \{e_1, e_2\}, \{e_3\}, \{e_4\}\}$

 $\mathfrak{I}_{\mathfrak{R}}*(Y) = \{U_2, \phi, \{e_2\}, \{e_1, e_2, e_3\}, \{e_1, e_3\}\}.$

Define h: $(U_1, \Im_{\Re}(X)) \rightarrow (U_2, \Im_{\Re}*(Y))$ as $h(d_1) = e_1, h(d_2) = e_2, h(d_3) = e_3 = h(d_4).$

Then $h^{-1}(\{e_2\}) = \{d_2\}, h^{-1}(\{e_1, e_2, e_3\}) = U_1$ and $h^{-1}(\{e_1, e_3\}) = \{d_1, d_3, d_4\}$ and hence

h is rnp-continuous.

Theorem 5.3 A function $\ell: (U_1, \mathfrak{I}_{\mathfrak{R}}(X)) \to (U_2, \mathfrak{I}_{\mathfrak{R}}*(Y))$ is rnp-continuous if and only if $\ell^{-1}(D)$ is rnp-closed in $(U_1, \mathfrak{I}_{\mathfrak{R}}(X))$ for every $D \in \&C(U_2)$.

Proof: Let $D \in \&C(U_2)$, then $U_2 \setminus D \in \&O(U_2)$. Since ℓ is rnp-continuous,

 $\ell^{-1}(U_2 \setminus D) = U_1 \setminus \ell^{-1}(D)$ is rnp-open in U_1 . Therefore, $\ell^{-1}(D)$ is rnp-closed in $(U_1, \mathfrak{IR}(X))$.

Conversely, let $K \in \&O(U_2)$, then $(U_2 \setminus K) \in \&C(U_2)$. By assumtion,

 $\ell^{-1}(U_2 \setminus K) = U_1 \setminus \ell^{-1}(K)$ is rnp-closed in U_1 which implies $\ell^{-1}(K)$ is rnp-open in U_1 .

Therefore, ℓ is rnp-continuous.

Remark 5.4 The following implications hold and none of its implications is reversible.

rnp-continuity \rightarrow np-continuity \rightarrow nb-continuity.

Example 5.5 Consider $(U_1, \mathfrak{I}_{\mathfrak{R}}(X))$ and $(U_2, \mathfrak{I}_{\mathfrak{R}}*(Y))$ as in Example 5.2.

Define $h: (U_1, \mathfrak{I}_{\mathfrak{R}}(X)) \to (U_2, \mathfrak{I}_{\mathfrak{R}}*(Y))$ as $h(d_1) = e_1, h(d_2) = e_3, h(d_3) = e_4$ and

 $h(d_4) = e_2$. Then $h^{-1}(\{e_2\}) = \{d_4\} h^{-1}(\{e_1, e_2, e_3\}) = \{d_1, d_2, d_3\}$ and $h^{-1}(\{e_1, e_3\}) = \{d_1, d_2\}$. Therefore, h is np-continuous(hence nb-continuous) but there exists $\{e_1, e_3\} \in \mathfrak{I}_{\mathfrak{R}}*(Y)$ such that $h^{-1}(\{e_1, e_3\}) = \{d_1, d_2\} \notin \mathfrak{R} \otimes \mathcal{PO}(U)$. Hence h is not rnp-continuous.

Theorem 5.6 The following statements are equivalent for a function

 $\ell: (U_1, \mathfrak{I}_{\mathfrak{R}}(X)) \to (U_2, \mathfrak{I}_{\mathfrak{R}}(Y))$ where $(U_1, \mathfrak{I}_{\mathfrak{R}}(X))$ is nano partition:

(i) *l* is rnp-continuous;

(ii)For each B
$$\subseteq$$
 U₂, $cl_{rp}^{\aleph}((\ell-1(B)) \subseteq \ell^{-1}(\aleph cl(B));$

(iii)For each $A \subseteq U_1$, $\ell(cl_{rp}^{\aleph}(A)) \subseteq \aleph cl(\ell(A));$

(iv)For each $B \subseteq U_2$, $\ell^{-1}(\operatorname{Nint}(B)) \subseteq \operatorname{int}_{rp}(\ell^{-1}(B))$.

Proof:(i) → (ii): Let B ⊆ U₂ and since \aleph cl(B) ∈ \aleph C(U₂). Then by (i),

 $\ell^{-1}(\aleph cl(B)) \in R \aleph PC(U_1) \text{ which implies } cl_{rp}^{\aleph}(\ell^{-1}(B)) \subseteq cl_{rp}^{\aleph}(\ell^{-1}(\aleph cl(B))) = \ell^{-1}(\aleph cl(B).$

(ii) \rightarrow (i): Let $M \in \&C(U_2)$. Then by (ii), $cl_{rp}^{\&}(\ell^{-1}(M)) \subseteq \ell^{-1}(\&cl(M)) = \ell^{-1}(M)$ which implies

 $cl_{rp}^{\circ}(\ell^{-1}(M)) = \ell^{-1}(M)$ and since U₁ is nano partition, then by Corollary 4.29, $\ell^{-1}(M)$ is rnp-closed in U₁.

(ii)
$$\rightarrow$$
 (iii): Let $A \subseteq U_1$. Then $\ell(A) \subseteq U_2$. By (ii), we get $\ell^{-1}(\aleph cl(\ell(A))) \supseteq cl_{rp}^{"}(\ell^{-1}(\ell(A))) \supseteq cl_{rp}^{"}(\ell^{-1}(\ell(A))) \subseteq \ell(\ell^{-1}(\aleph cl(\ell(A)))) \subseteq \aleph cl(\ell(A)).$

(iii) \rightarrow (iv): Let B \subseteq U₂ and $\ell^{-1}(B) \subseteq$ U₁. Then by (iii),

$$\ell(cl_{rp}^{\aleph}(\ell^{-1}(B)) \subseteq \aleph cl(\ell(\ell^{-1}(B)) \subseteq \aleph cl(B) \rightarrow cl_{rp}^{\aleph}(\ell^{-1}(B)) \subseteq \ell^{-1}(\aleph cl(B)).$$

3044

x

J.B.Toranagatti

(ii) \rightarrow (iv): Replace B by U₂\ B in (ii), we get $cl_{rp}^{\aleph}(\ell^{-1}(U_2 \setminus B)) \subseteq \ell^{-1}(\aleph cl(U_2 \setminus B)).$

It implies that $cl_{rp}^{\aleph}(U_1 \setminus \ell^{-1}(B)) \subseteq \ell^{-1}(U_2 \setminus \Reint(B)).$

Therefore, $\ell^{-1}(\operatorname{Kint}(B)) \subseteq \operatorname{int}_{\operatorname{rp}}^{\operatorname{K}}(\ell^{-1}(B))$ for each $B \subseteq U_2$.

(iv) \rightarrow (i): Let $B \in \aleph O(U_2)$. Then, $\ell^{-1}(B) = \ell^{-1}(\aleph int(B)) \subseteq int_{rp}^{\aleph}(\ell^{-1}(B))$ which implies

 $int_{rp}^{\aleph}(\ell^{-1}(B) = \ell^{-1}(B) \text{ and since } (U_1, \Im_{\Re}(X)) \text{ is nano partition then by Corollary 4.29,}$

 $\ell^{-1}(B)$ is rnp-open in U₁.

References

- K.Bhuvaneswari and K.Mythili Gnanapriya, On nano generalised pre closed sets and nano pre generalised closed sets in nano topological spaces, Int.J. Inven. Res. in Sci., Eng. and Technology 3(2014), 16825-16829.
- D.A. Mary and I. Arockiarani, On characterizations of nano rgb-clased sets in nano topological spaces, Int. J. Mod. Eng. Res. 5(1)(2015),68–76.
- D.A. Mary and I. Arockiarani, On b-open sets and b-continuous functions in nano topological spaces, Int. J. Innov. Res. Stud. 3(11)(2014),98–116.
- 4. Z.Pawlak, Rough sets, Int. J. Comput. Inf. Sci. 11(5)(1982), 341-356.
- 5. A.Revathy, G.Ilango, On nano β-open sets, Int. J. Eng. Contemp.Math. Sci. 1(2)(2015), 1–6.
- P.Sathishmohan, V.Rajendran, C.Vignesh Kumar and P.K.Dhanasekaran, On nano semipre neighbourhoods in nano topological spaces, Malaya Journal of Matematik, 6(1)(2018), 294-298.
- 7. M.L.Thivagar and C.Riclord, On nano forms of weakly open sets, Int.J.Math.Stat.Inven., 1(1)(2013), 31-37.