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Abstract 

The notion of rnp-open sets in nano topological spaces is introduced.Some properties and 

characterizations of rnp-open sets are established. Also,a new class of continuity called rnp-
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1. Introduction 

 

 M.L.Thivagar and C.Richard[7] initiated the study of nano topology by using theory approximation 

and boundary region of a subset of an universe in terms of an equivalence relation on it. They have 

also defined nano-interior and nano-closure in a nano topological spaces. In this paper,we introduce 

and study a new class of sets called rnp-open sets. Also,some properties of rnp-continuous functions 

are obtained. 

2. Preliminaries 

 Definition 2.1[4] Let U be a non-empty finite set of objects, called the universe, and ℜ be an 

equivalence relation on U named as the indiscernible relation. The pair (U,ℜ) is said to be the 

approximation space. Let Y ⊆ U. 

(i)The lower approximation of Y with respect to ℜ is Lℜ(Y)= 
y U

  


{ ℜ(y):ℜ(y) ⊆ Y}  

where ℜ(y) denotes the equivalence class determined by y ∈ U. 

(ii) The upper approximation of Y with respect to ℜ is Hℜ(Y)= 
y U

  


{ ℜ(y):ℜ(y) ∩ Y≠ ϕ} . 

(iii)The boundary region of Y with respect to ℜ is Bℜ(Y) = Hℜ(Y)/Lℜ(Y). 
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Definition 2.2[7] In the approximation space (U,ℜ),let X ⊆ U. Then 

ℑℜ(X)=ℵT={U,ϕ,Lℜ(X),Hℜ(X),Bℜ(X)} forms a topology on U and it is called as the nano topology 

with respect to X. The pair (U,ℵT) is called nano topological space. 

 Elements of ℵT are known as the nano open(briefly,n-open) sets and the relative complements of 

nano open sets are called nano closed(briefly,n-closed) sets. 

Throughout this paper,the word ”NTS” mean an arbitrary nano topological space (U,ℵT).  

Let M1 ⊆ U, then ℵcl(M1) = ∩{G: M1 ⊆ G and Gc∈ℑℜ(X)} is the nano closure of M1 and ℵint(M1) 

= ∪ {H: H ⊆ M1 and H ∈ ℑℜ(X) } is the nano interior of  M1. 

Definition 2.3[3,5,7] A subset M1 in (U,ℵT) is said to be: 

(i) nano b-open(briefly,nb-open) if M1 ⊆ ℵcl(ℵint(M1))∪ℵint(ℵcl(M1)), 

(ii) nano preopen(briefly,np-open) if M1 ⊆ ℵint(ℵcl(M1)), 

(iii) nano regular open(briefly,nr-open) if M1 = ℵint(ℵcl(M1)), 

(iv) nano α-open(briefly,nα-open) if M1 ⊆ ℵint(ℵcl(ℵint(M1))). 

(iv) nano semiopen(briefly,ns-open) if M1 ⊆ ℵcl(ℵint(M1), 

(v) nano β-open(briefly,nβ-open) if M1 ⊆ ℵcl(ℵint(ℵcl(M1))). 

                 The complements of the above respective open sets are their respective closed sets. 

The family of all n-open(resp.,n-closed,np-closed,np-open, nb-open and nb-closed) sets of (U,ℵT) is 

denoted by ℵO(U)(resp.,ℵC(U), ℵPC(U) (resp.,ℵPO(U), ℵBO(U) and ℵBC(U)). 

Theorem 2.4 If M1 and M2 be any subsets in (U,ℵT).Then: 

(1) M1 ∩ ℵcl(M2) ⊆ ℵcl(M1 ∩ M2) if  M1  is n-open. 

(2)ℵint(M1  ∪  M2)⊆ M1 ∪  ℵint(M2) if M2 is n-closed. 

Definition 2.5[1] If K is a subset in (U,ℵT),then: 

ℵpcl(K)= ∩{B:Bc∈ ℵT such that K ⊆ B} 

ℵpInt(K)= ∪ {G: G∈ ℵT such that G ⊆ K} 

Theorem 2.6 For a subset K in (U,ℵT), 

(i) ℵpcl(K) is the smallest np-closed superset of K and ℵpint(K) is the largest np-open subset of K. 

(ii) K is np-closed if and only if K = ℵpcl(K) and K is np-open if and only if K = ℵpint(K). 
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Theorem 2.7[3] For a subset K in (U,ℵT), 

(i) ℵbcl(K) is the smallest nb-closed superset of K. 

(ii) K is nb-closed if and only if K = ℵbcl(K). 

Definition 2.8[2, 3] A function ℓ:(U1, ℑℜ(X) )) → (U2, ℑℜ∗(Y)) is called: 

(i) np-continuous if ℓ-1(K) ∈ ℵPO(U1) for every K∈ℑℜ∗(Y), 

(ii) nb-continuous if ℓ-1(K) ∈ ℵBO(U1) for every K∈ℑℜ∗(Y). 

                                  3.More properties of nano pre-closed sets: 

In this section,we give additional results on np-open and np-closed sets which would be useful in our 

later section. 

Theorem 3.1 In a NTS (U,ℵT),let M⊆U.Then: 

(1) ℵpcl(M) = M ∪ ℵcl(ℵint(M)). 

(2) ℵscl(M) = M ∪ ℵint(ℵcl(M)). 

(3) ℵbcl(M) = M ∪ [ℵcl(ℵint(M))∩ℵint(ℵcl(M))]. 

Proof:(1)Since ℵpcl(M) is np-closed,  

   ℵcl(ℵint(M)) ⊆ ℵcl(ℵint(ℵpcl(M)) ⊆ ℵpcl(M)..........(I) 

On the otherhand we have 

ℵcl(ℵint(M∪ℵcl(ℵint(M))) ⊆ ℵcl(ℵint(K) ∪ℵcl(ℵint(M))) by Theorem 2.17 

                                                      = ℵcl(ℵcl(ℵint(M))) 

                                                      = ℵcl(ℵint(M)) 

                                                     ⊆ M ∪ ℵcl(ℵint(M)......(I) 

Therefore M ∪ ℵcl(ℵint(M) is a np-closed superset of M it follows that  

ℵpl(M) ⊆M ∪ ℵcl(ℵint(M)........(II) 

By (I) and (II),ℵpcl(M) = M ∪ ℵcl(ℵint(M)). 

The other results can be proved similarly. 

Corollary 3.2 In a NTS (U,ℵT),let M⊆U.Then: 

(1) ℵpint(M) = M ∩ ℵint(Ncl(M)). 
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(2) ℵsint(M) = M ∩ ℵcl(Nint(M)). 

(3) ℵpint(M) = M ∩ [ℵint(ℵcl(M))∪ℵcl(ℵint(M))]. 

Theorem 3.3 In a NTS (U,ℵT),let M⊆U.Then: 

ℵint(ℵcl(ℵpcl(M))= ℵint(ℵcl(M)). 

Proof: We have ℵint(ℵcl(ℵpcl(M)) = ℵint(ℵcl(M ∪ ℵcl(ℵint(M)))) 

                                                        = ℵint(Ncl(M) ∪ ℵcl(ℵint(M))) 

                                                        = ℵint(ℵcl(M)) 

Theorem 3.4 In a NTS (U,ℵT),let M⊆U.Then ℵpint(ℵpcl(M)) = ℵpcl(M) ∩ ℵint(ℵcl(M)). 

Proof: We have    ℵpint(ℵpcl(M))  =  ℵpcl(M) ∩ ℵint(ℵcl(ℵpcl(M)) 

By Theorem 3.3,  ℵpint(ℵpcl(M)) =  ℵpcl(M) ∩ ℵint(ℵcl(M) 

Theorem 3.5 [3]In a NTS (U,ℵT),let M⊆U.Then ℵbcl(M)) = ℵpcl(M) ∩ℵscl(M)). 

Theorem 3.6 In a NTS (U,ℵT),let M⊆U.Then ℵpint(ℵpcl(M)) = ℵpint(ℵbcl(M)). 

Proof: By Theorem 3.4,we have ℵpint(ℵpcl(M))= ℵpcl(M) ∩ ℵint(ℵcl(M) 

                                                                            ⊆  ℵpcl(M) ∩ (M ∪ ℵint(ℵcl(M)). 

                                                                            =  ℵpcl(M) ∩ (ℵscl(M)). 

                                                                            =  ℵbcl(M). 

Therefore, ℵpint(ℵpcl(M)) ⊆ ℵpint(ℵbcl(M)) and reverse inclusion is obvious 

Definition 3.7 [6] A subset K in (U,ℵT) is said to be nano dense if ℵcl(K)=U 

Theorem 3.8 In a NTS (U,ℵT),every nano dense set is np-open but not conversely. 

Proof:Let K be any nano dense set in (U,ℵT) Then ℵcl(K)=U. This implies 

that ℵint(ℵcl(K))=U so that K ⊆ ℵint(ℵcl(K)). Hence K is np-open. 

Example 3.9 Let U = {c1,c2,c3,c4} with U\R= {{c1}, {c3}, {c2,c4}} and let X = {c1,c2}, 

ℵT ={U, ϕ, {c1}, {c1,c2,c4}, {c2,c4}}.Then the set {c1} is np-open but not nano dense. 

4.Nano regular pre-open sets: 

Definition 4.1 A subset H in (U,ℵT) is said to be: 

(i)regular nano preopen(briefly,rnp-open) if H = ℵpint(ℵpcl(H)), 
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(ii)regular nano preclosed(briefly,rnp-closed) if H = ℵpcl(ℵpint(H)). 

The family of all rnp-open(resp.,rnp-closed) sets of (U,ℵT) is denoted by RℵPO(U) (resp.,RℵPC(U)). 

Theorem 4.2 In a NTS (Ս,ℵT),the following hold for any M1,M2 ⊆ Ս: 

(i) If M1 ⊆ M2, then ℵpint(ℵpcl(M1) ⊆ ℵpint(ℵpcl(M2)). 

(ii) If M1 is np-open, then M1 ⊆ ℵpint(ℵpcl(M1)). 

(iii) If M1 is np-closed, then ℵpcl(ℵpint(M1)) ⊆ M1. 

(iv) ℵpint(ℵpcl(M1)) is rnp-open. 

(v) If M1 is np-closed, then ℵpint(M1) is rnp-open. 

(vi) If M1 is np-open, then ℵpcl(M1) is rnp-closed. 

Proof:(i)Obvious. 

(ii) Let M1 be nano preopen and since M1 ⊆ ℵpcl(M1),then M1 ⊆ ℵpint(ℵpcl(M1)). 

(iii) Let M1 be np-closed and since ℵpint(M1) ⊆ M1,then ℵpcl(ℵpint(M1) ⊆ M1. 

(iv) We have ℵpint(ℵpcl(ℵpint(ℵpcl(M1)) ⊆ ℵpint(ℵpcl(ℵpcl(M1)) = ℵpint(ℵpcl(M1) 

and ℵpint(ℵpcl(ℵpint(ℵpcl(M1)))⊇ℵpint(ℵpint(ℵpcl(M1)) = ℵpint(ℵpcl(M1). 

Hence ℵpint(ℵpcl(ℵpint(ℵpcl(M1))) = ℵpint(ℵpcl(M1). Hence ℵpint(ℵpcl(M1)) is rnp-open. 

(v) Suppose that M1 ∈  ℵPC(U). By (iii), ℵpint(ℵpcl(ℵpint(M1)) ⊆ ℵpint(M1). 

On the other hand, we have ℵpint(M1) ⊆ ℵpcl(ℵpint(M1) so that  

ℵpint(M1) ⊆ ℵpint(ℵpcl(ℵpint(M1)).Therefore ℵpint(ℵpcl(ℵpint(M1))=ℵpint(M1). 

This shows that ℵpint(M1) is rnp-open. 

(vi)Similar to (v). 

Theorem 4.3 In a NTS (Ս,ℵT),every rnp-open set is (i) np-open, (ii)nb-open, (iii)nβ -open, 

 (iv) nb-closed. 

Proof:(i)If K is rnp-open, then 

                            K = ℵpint(ℵpcl(K) = ℵpcl(K) ∩ ℵint(ℵcl(K)) ⊆ ℵint(ℵcl(K)). 

Hence K is np-open. 

(ii)Let K be rnp-open, then K = ℵpint(ℵpcl(K) 

                                               = ℵpcl(K) ∩ ℵint(ℵcl(K)) 
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                                              ⊆ ℵint(ℵcl(K)) 

                                             ⊆ ℵint(ℵcl(K))∪ℵcl(ℵint(K)). 

Hence K is nb-open. 

(iii) If K is rnp-open, then K = ℵpint(ℵpcl(K) 

                                              = ℵpcl(K) ∩ ℵint(ℵcl(K)) 

                                             ⊆ ℵint(ℵcl(K)) 

                                             ⊆ ℵcl(ℵint(ℵcl(K))). 

Therefore, K is nβ-open. 

(iv) Let K be rnp-open, then K= ℵpint(ℵpcl(K) 

                                                = ℵpcl(K) ∩ ℵint(ℵcl(K) 

                                                = [K∪ℵcl(ℵint(K)] ∩ ℵint(ℵcl(K) 

                                                = [K∩ℵint(ℵcl(K)] ∪ [ℵcl(ℵint(K)∩ℵint(ℵcl(K)] 

                                               = K ∪ [ℵcl(ℵint(K) ∩ ℵint(ℵcl(K)] since K is np-open 

                                              = ℵbl(K) 

Hence K is nb-closed. 

                  The following Example shows that every np-open(hence nb-open and nβ-open) set need 

not be a rnp-open set. 

Example 4.4 The set {c1,c2} in Example 3.9 is np-open but it is not rnp-open. 

Theorem 4.5 In (Ս,ℵT),every nr-open set is rnp-open but not conversely. 

Proof:Let K be any nr-open set. By Theorem 3.4, ℵpint(ℵpcl(K) = ℵpcl(K) ∩ ℵint(ℵcl(K))                                   

= ℵpcl(K) ∩ K = K. Hence K is rnp-open. 

Example 4.6 The set {c2} in Example 3.9 is rnp-open but it is not nr-open. 

Definition 4.7 A NTS (Ս,ℵT) is called nano partition if NO(Ս) = NC(Ս). 

Theorem 4.8 Let (Ս,ℵT) be a a nano partition space, then every np-open set is rnp-open. 

Remark 4.9 The class of rnp-open sets is not closed under finite union as well as finite intersection 

as shown in Example 4.10. 

Example 4.10 Consider (U,ℵT) as in Example 3.9. 

Here {c1} and {c2} ∈ RℵPO(Ս) but {c1}∪{c2} = {c1,c2} ∉ RℵPO(U). 
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Moreover, {c1,c2,c3} and {c1,c3,c4} ∈ RℵPO(U) but {c1,c2,c3} ∩ {c1,c3,c4} = 

{c1,c3} ∉ RℵPO(U). 

Theorem 4.11 Let K be a np-closed in (U,ℵT),then K is np-open if and only if K is rnp-open. 

Proof: Let K be a np-open set and by hypothesis,K is np-closed. Then K = ℵpint(K) and  

K = ℵpcl(K). Therefore,ℵpint(ℵpcl(K)) = ℵpint(K) = K. Hence K is rnp-open. 

Other part follows from the Theorem 4.3(i) 

Theorem 4.12 For a subset K in (U,ℵT),the following statements are  equivalent: 

(i)K is rnp-open; 

(ii) K is np-open and nb-closed. 

Proof:(i) → (ii):From Theorem 4.3(i,iv). 

(ii) → (i):Let K be both nb-closed and np-open. Then K = ℵbcl(K) and K = ℵpint(K).  

By Theorem 3.6, ℵpint(ℵpcl(K)) = ℵpint(ℵbcl(K)) = ℵpint(K) = K. Hence K is rnp-open. 

Definition 4.13 [6] A NTS (U,ℵT) is called nano submaximal if every nano dense subset of  

U is n-open 

Theorem 4.14 The following are equivalent for a NTS (U,ℵT): 

(i) (U,ℵT) nano submaximal; 

(ii) ℵPO(U)=ℵO(U). 

Proof: (i) → (ii):Let K ⊆ U be np-open. Then K ⊆ ℵint(ℵcl(K) = M,say. 

This implies ℵcl(M) = ℵcl(K), so that  

                               (ℵcl((U\M) ∪ K) = ℵcl(U\M) ∪ ℵcl(K) 

                                                            = ℵcl(U\M) ∪ ℵcl(M) 

                                                           = U and thus (U\M) ∪ K is nano dense in U. 

 By (i), (U\M) ∪ K is n-open. Now, K = ((U\M) ∪ K) ∩ M which is n-open. 

(ii) → (i): Let K be a nano dense subset of U. Then ℵint(ℵcl(K) = U, then K ⊆ ℵint(ℵcl(K)  

and K is np-open and hence by (ii), K is n-open. 
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Theorem 4.15 If a NTS (U,ℵT) is nano submaximal, then any finite intersection of np-open sets is 

np-open. 

Proof:Obvious since ℵO(X) is closed under finite intersection. 

Theorem 4.16 If a NTS (U,ℵT) is nano submaximal, then any finite in tersection of rnp-open sets is 

rnp-open. 

Proof: Let {Ai:i=1,2,...,n} be a finite class of rnp-open sets. Since the space (U,ℵT) is nano 

submaximal, then by Theorem 4.15, we have 
n

i

i=1

  A ∈ ℵPO(U). By Theorem 4.2(ii),  

n

i

i=1

  A ⊆ℵpint(ℵpcl(
n

i

i=1

  A ). For each i, we have 
n

i

i=1

  A ⊆  Ai and thus ℵpint(ℵpcl(
n

i

i=1

  A )⊆ 

ℵpint(ℵpcl(Ai) = Ai  as ℵpint(ℵpcl(Ai) = Ai. Therefore ℵpint(ℵpcl(
n

i

i=1

  A ) ⊆
n

i

i=1

  A . 

In consequence, 
n

i

i=1

  A  is rnp-open in U. 

Theorem 4.17 If (U,ℵT) is nano partition, then the arbitrary union of rnp-open sets is rnp-open. 

Proof: It follows from the Theorem 4.8 

Definition 4.18 A subset M in (U,ℵT) is called nano ε-open if ℵint(ℵcl(M)) ⊆ ℵcl(ℵint(M)). 

Theorem 4.19 In a NTS (U,ℵT),every ns-open set is nano ε-set but not conversely. 

Proof:Let K be a ns-open set, then K ⊆ ℵcl(ℵint(K)) → ℵint(ℵcl(K)) ⊆ ℵcl(ℵint(K)).  

Hence K is nano ε-set. 

Example 4.20 The set {c3} in Example 3.9 is ε-set but it is not ns-open. 

Theorem 4.21 In a NTS (U,ℵT),every ns-closed set is nano ε-set but not conversely. 

Proof:Let K be ns-closed,then ℵint(ℵcl(K)) ⊆ K. Therefore ℵint(ℵcl(K)) ⊆ ℵcl(ℵint(K)). Hence K 

is nano ε-set. 

Example 4.22 The set {c1,c3} in Example 3.9 is nano ε-set but it is not ns-closed. 

                                                      DIAGRAM 

                              nr-open  →  nα-open  →  ns-open  →  nano ε-set 

                                ↓                  ↓                   ↓ 

                              rnp-open  → np-open  →  nb-open 
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Remark 4.23 The notions of nano ε-sets and rnp-open(hence np-open,nb-open)sets are independent 

of each other. 

Example 4.24 Let (U,ℵT) be a NTS as in Example 3.9. Then {c3} is nano  ε-set but not a  

nb-open set and the set {c1} is rnp-open but it is not a ε-set. 

Theorem 4.25 The following are equivalent for any subset K in (U,ℵT): 

(i) K is ns-open; 

(ii) K is both nb-open and nano ε-set. 

Proof: (i) → (ii):Obvious 

(ii) → (i):Let K be both nb-open and nano ε-set. 

ℵint(ℵcl(K))∩ ℵcl(ℵint(K)) ⊆ K and ℵint(ℵcl(K)) ⊆ ℵcl(ℵint(K)). 

Then ℵint(ℵcl(K)) ⊆ K and hence K is ns-open. 

Theorem 4.26 The following are equivalent for any subset K in (U,ℵT): 

(i) K is nr-open; 

(ii) K is rnp-open and nano ε-set. 

Proof: (i) → (ii):Obvious 

(ii) → (i):Let K be rnp-open and nano ε-set.Then,by Theorems 3.1 and 3.4, 

              we obtain      K = ℵpint(ℵpcl(K)) 

                                       = (K ∪ ℵcl(ℵint(K)) ∩ ℵint(ℵcl(K)) 

                                      = (K ∩ ℵint(ℵcl(K)) ∪ (ℵcl(ℵint(K)) ∩ ℵint(ℵcl(K))) 

                                      = (K ∩ ℵint(ℵcl(K)) ∪ ℵint(ℵcl(K)) 

                                      = ℵint(ℵcl(K)) 

Therefore, K = ℵint(ℵcl(K)) and hence M is nr-open 

Definition 4.27 In (U,ℵT),let M ⊆ U. 

(1)The rnp-interior of M, denoted by intℵ
rp(M) is defined as 

𝑖𝑛𝑡
          rp

           𝑁

(M) = ∪{ K:K ⊆ M and M ∈  RℵPO(U) }; 

(2)The rnp-closure of M, denoted by clℵ
rp(M)  is defined as 
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𝑐𝑙
         rp

        ℵ

(M)  = ∩{ F: M ⊆ F and F ∈  RℵPC(U) }. 

Theorem 4.28 In (U,ℵT),let M ⊆ U.Then the following hold: 

(i) 𝑖𝑛𝑡
           rp

           ℵ

(

          

          

M)  ⊆M ⊆ 𝑐𝑙
         rp

        ℵ

(M). 

(ii) If M is rnp-open(rnp-closed),then  intℵ
rp(M) = M(resp, 𝑐𝑙

         rp

        ℵ

(M) =M). 

 

Corollary 4.29 If in addition (U,ℵT) is nano partition,then the converse of Theorem 4.28(ii) 

 is true. 

5.rnp-continuous function: 

In this section, the concept of rnp-continuity and their properties are investigated. 

Definition 5.1 A function  ℓ:(U1, ℑℜ(X))  →  (U2, ℑℜ∗(Y))  is said to be rnp-continuous  

if ℓ-1(H) is rnp-open in  (U1, ℑℜ(X) ) for each H ∈ ℑℜ∗(Y). 

Example 5.2 Let  U1 = {d1,d2,d3,d4} with U1\ℜ= {{d1}, {d3}, {d2,d4}} 

and let X = {d1,d2} , ℑℜ(X)  ={U1, ϕ, {d1}, {d1,d2,d4}, {d2,d4}}. 

Then nano rnp-open sets are U1, ϕ, {d1},{d2},{d4},{d2,d4},{d1,d2,d3},{d1,d3,d4}. 

Let U2 = {e1,e2,e3,e4} with U2\ℜ= {{e1,e3}, {e3}, {e4}} and let Y = {e1,e2}, 

ℑℜ∗(Y)  = {U2, ϕ, {e2}, {e1,e2,e3}, {e1,e3}}. 

Define Һ: (U1, ℑℜ(X) )  →  (U2 , ℑℜ∗(Y))   as  Һ(d1) = e1, Һ(d2) = e2, Һ(d3) = e3= Һ(d4). 

Then Һ-1({e2}) = {d2}, Һ-1({e1,e2,e3}) = U1 and  Һ-1({e1,e3}) = {d1,d3,d4} and hence  

Һ is rnp-continuous. 

Theorem 5.3 A function ℓ: (U1, ℑℜ(X) )  →  (U2, ℑℜ∗(Y))    is rnp-continuous if and only if   

ℓ-1(D) is rnp-closed in  (U1, ℑℜ(X) )   for every D ∈ ℵC(U2). 

Proof: Let D ∈ ℵC(U2), then U2\D ∈ ℵO(U2).  Since ℓ is rnp-continuous, 

 ℓ-1(U2\D) = U1\ ℓ
-1(D) is rnp-open in U1. Therefore, ℓ-1(D) is rnp-closed in (U1, ℑℜ(X)) . 

Conversely,let K ∈ ℵO(U2),then (U2\K) ∈ ℵC(U2). By assumtion, 

 ℓ-1(U2\K) = U1\ ℓ
-1(K) is rnp-closed in U1 which implies ℓ-1(K) is rnp-open in U1. 
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Therefore, ℓ is rnp-continuous. 

Remark 5.4 The following implications hold and none of its implications is reversible. 

                            rnp-continuity  →  np-continuity  →  nb-continuity. 

Example 5.5 Consider (U1, ℑℜ(X) )   and (U2, ℑℜ∗(Y))  as in Example 5.2. 

Define  Һ : (U1, ℑℜ(X) ) → (U2, ℑℜ∗(Y))   as Һ(d1) = e1, Һ(d2) = e3, Һ(d3) = e4  and 

Һ(d4) = e2. Then Һ-1({e2}) ={d4} h-1({e1,e2,e3}) = {d1,d2,d3} and  Һ-1({e1,e3}) = {d1,d2}. Therefore, Һ 

is np-continuous(hence nb-continuous) but there exists {e1,e3} ∈ ℑℜ∗(Y)  such that  Һ-1({e1,e3})= 

{d1,d2} ∉ RℵPO(U).  Hence Һ  is not   rnp-continuous. 

Theorem 5.6 The following statements are equivalent for a function 

ℓ: (U1, ℑℜ(X) ) →  (U2 , ℑℜ∗(Y))  where (U1, ℑℜ(X) )  is nano partition: 

(i) ℓ is rnp-continuous; 

(ii)For each B ⊆ U2, 𝑐𝑙
         rp

        ℵ

((ℓ−1(B)) ⊆ℓ-1(ℵcl(B)); 

(iii)For each A ⊆ U1, ℓ( 𝑐𝑙
         rp

        ℵ

((A)) ⊆ ℵcl(ℓ(A)); 

(iv)For each B ⊆ U2, ℓ
-1(ℵint(B)) ⊆intℵ

rp(ℓ
-1(B)). 

Proof:(i) → (ii): Let B ⊆ U2 and since ℵcl(B) ∈ ℵC(U2). Then by (i), 

ℓ-1(ℵcl(B)) ∈ RℵPC(U1) which implies 𝑐𝑙
         rp

        ℵ

(ℓ-1(B)) ⊆ 𝑐𝑙
         rp

        ℵ

(ℓ-1(ℵcl(B)))= ℓ-1(ℵcl(B). 

(ii) → (i): Let M ∈ ℵC(U2).Then by (ii), 𝑐𝑙
         rp

        ℵ

(ℓ-1(M)) ⊆ℓ-1(ℵcl(M)) = ℓ-1(M)   which implies  

𝑐𝑙
         rp

        ℵ

(ℓ-1(M)) = ℓ-1(M) and since U1 is nano partition, then by Corollary 4.29, ℓ-1(M) is rnp-closed  in 

U1. 

(ii) → (iii): Let A ⊆ U1.Then ℓ(A) ⊆ U2. By (ii), we get ℓ-1(ℵcl(ℓ(A))) ⊇ 𝑐𝑙
         rp

        ℵ

(ℓ-1(ℓ(A))) ⊇

𝑐𝑙
         rp

        ℵ

(A). Therefore, ℓ(𝑐𝑙
             rp

             ℵ

(A)) ⊆ ℓ(ℓ-1(ℵcl(ℓ(A))) ⊆ ℵcl(ℓ(A)). 

(iii)→ (iv): Let B ⊆ U2 and ℓ-1(B) ⊆ U1. Then by (iii), 

 ℓ(𝑐𝑙
             rp

             ℵ

(ℓ-1(B)) ⊆ ℵcl(ℓ(ℓ-1(B)) ⊆ ℵcl(B)   → 𝑐𝑙
         rp

        ℵ

(ℓ-1(B)) ⊆ℓ-1(ℵcl(B)). 
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(ii) →  (iv): Replace B by U2\ B in (ii), we get 𝑐𝑙
         rp

        ℵ

(ℓ-1(U2\B)) ⊆ℓ-1(ℵcl(U2\B)). 

 It implies that 𝑐𝑙
         rp

        ℵ

(U1\ ℓ
-1(B)) ⊆ℓ-1(U2\ℵint(B)).  

Therefore, ℓ-1(ℵint(B)) ⊆ 𝑖𝑛𝑡
         rp

        ℵ

(ℓ-1(B)) for each B ⊆ U2. 

(iv) → (i): Let B ∈ ℵO(U2).Then, ℓ-1(B) = ℓ-1(ℵint(B)) ⊆ 𝑖𝑛𝑡
          rp

          ℵ

(ℓ-1(B)   which implies  

𝑖𝑛𝑡
          rp

           ℵ

(ℓ-1(B) = ℓ-1(B) and since (U1, ℑℜ(X) )   is nano partition then by Corollary 4.29,  

ℓ-1(B)  is rnp-open in U1.       
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