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ABSTRACT 

Mutation testing is the efficient and costlier testing method for the fault identification process for 

the code. It is costlier one due to the different levels of operations to generate the test case 

scenario. But, an application should pass such type of test cases to perform in an effective 

manner. Several approaches were proposed to reduce the cost for the mutation testing. The 

approaches were genetic algorithm, multi-objective particle swarm optimization and it is based 

on minimizing the cost for generating the test cases. But, the minimum value cannot be 

determined effectively because it is based on the bounds given to the problem and its search 

space region.  In this, the objective function for all the optimization approaches is same. Here, 

the cost function is based on the reachability, necessity and control parameters. The use of 

optimization approach is to determine the minimal value for the cost function with intensive 

searching which is similar to the mutation testing. The proposed multi-objective surrogate based 

optimization process to overcome the drawbacks of existing approaches. Because, the surrogate 

optimization main work is to determine the minimal value for the objective function. This 

property helps to reduce the cost effectively as compared to the previous approaches. Here, the 

cost function is based on the reachability, necessity and control parameters. The optimal value 

for this cost function will be determined through our proposed method and it will produce the 

best test case with minimal cost. The proposed method is implemented and tested using the 

emujava and it able to achieve high mutation score with lesser number of iterations.  It also able 

to identify the doubtful mutants which helps to speed up the process and reduce the test cases. 

Keywords: Mutation testing; necessary; reachable; control; cost; multi-objective;surrogate based 

optimization. 
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1. Preface 

Software testing is an important process in the development of the software. Because, it check 

whether the design is meet with the requirements. It is an important action to fulfil the 

requirements of the user and produce a bug free application. 

In software development, the testing process is performed from the starting of the application till 

its dispatch process. In order to ensure the details, each process in development phase is 

subjected to testing either in unit or in the bulk manner. The testing process will stop only if the 

requirements are meets, there is no bug while operating the applications, it meet up all the 

conditions while processing it. A tested application only provide a long term communication and 

attracts the user. 

Testing main role is to validate the application that all the criteria or the conditions for operating 

the application is possible and it check the final requirements. Testing is of generally three types: 

white box, grey box and black box.  

In white box, the tester has complete knowledge about the information and methodologies used 

in it. Because, it is an organized testing process and produce the less bug free application. The 

tester design the cases and information based on that. In black box, it is the vice versa of the 

white box. The tester need not require great knowledge about the application and simply check 

the test case scenario. The grey box which requires limited knowledge about the application to 

process it effectively. 

Among the three testing methods, the white box testing is the high time consumption test due to 

the keen processing of the data. But, the end result of the testing is effective one as compared to 

the other testing methods. In this, Mutation testing is analysed to reduce the time for the 

processing is proposed.  

Mutation testing is comes under the category of white box testing. Because, it is highly structure 

oriented based testing process. It involves more parameters for testing and time and cost 

consumption is high. Mutation testing is to reduce the code size and the vulnerability of the code 

if any changes occur to it. 

Mutation testing is performed by changing the code. The code is changed by using any one of the 

method. First, the values used in the code can be changed. Second, the conditions used for the 

checking an operation is changed. Third, the parameters used are changed. In all the three 

methods, the code should pass the test for less bug free application by generating the different 

output as compared to the original code. 

The mutation testing involves high cost because it creates the individual test case scenario for all 

the statements in the code. To automate this process, the Pit testing and Stryker tools were used. 

The evaluation is based on the mutation score. The number of killed mutants should be high for 
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higher mutation score. Then, only the application is ready for the usage. The methods to use 

mutation test and its cost minimization is analysed in below papers. 

Silva et al., (2017) studied about the role of optimization process in the mutation testing [1]. 

Mutation testing is highly cost oriented in terms of time and processing. Because, it creates a vast 

number of test cases for a problem. Hence, an automated process and optimal selection of test 

cases is important to reduce the cost of testing. To perform this process, the optimization 

algorithms like genetic, hill climbing and ant colony and other techniques were employed. Those 

algorithms will process based on the cost function. The cost function may be the mutant score or 

the killed mutants. The solution may give the optimal mutants or the operators for generating the 

mutants.  

Huang et al (2014) utilized Particle Swarm Optimization (PSO) calculation that proposed the 

gathering self-movement input (SAF) administrator and Gauss transformation (G) changing 

idleness weight to upgrade the presentation of molecule swarm advancement (PSO) [2]. Utilizing 

the upgraded calculation in programming experiment, the trials show that the presenting a 

solitary way wellness work structure and multi-way wellness calculation of equal reasoning 

gives better outcomes as than the cycle time in single way test contrasted with the standard PSO 

and is more compelling in the age of multi-way experiment. 

 Li et al (2015) suggested about reducing the expense of mutation testing, and presented an 

algorithm for mutation test generation, and then provided few reduction rules to minimize the set 

of test suite that is employed for killing mutants [3] depending on formal concept analysis. In the 

case of mutation testing, few representative errors are intentionally seeded into the SUT (System 

under Testing)to generate a set of faulty programs known as mutants, and all current test cases 

are executed on all the mutants. Designing efficient and helpful mutation operators are one 

among the key challenges of mutation testing. The results proved that this technique can produce 

a smaller size test suite compared to other techniques. Moreover, this technique can be of some 

assistance to mutation testing. 

Gong et al (2015) presented a powerful change execution strategy and the transformation based 

flaw limitation plot with the method, alluded to as Faster-Mutation-based Fault Localization 

(MBFL) [4]. The dynamic change execution procedure includes two improvements, which are 

transformation execution enhancement and experiments execution advancement. These 

enhancements are centered on faster processing dubiousness estimations of articulations through 

the dynamic change of the request for execution of freaks and experiments. 

Souza et al (2016) proposed a computerized test age methodology, utilizing slope moving, for 

incredible transformation [5]. It gradually focuses at executing the freaks emphatically, by 

focusing on the proliferation of freaks', i.e., the methods for slaughtering the mutants, which are 

murdered pitifully however not sufficient. Moreover, the exact outcomes worried about the 

expense and effectiveness of this methodology over a lot of 18Cprograms. This procedure 

achieved a higher changes center contrasted with irregular testing, by 19,02% on a normal, and 
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the prior presented test age methods, which disregard the proliferation of freaks', by 7,2% on a 

normal. The outcomes likewise demonstrate the improvement of this strategy over the prior 

techniques. 

Prajapati et al (2016) introduced an improved information stream based Quality Assurance (QA) 

model for Component-based Software Engineering (CBSE) by utilizing the Ant Colony 

Optimization (ACO) calculation [6] for upgrading the code given for programmed age and 

prioritization of ideal way in choice to choice Control Flow Graph (CFG) that, thusly, prompts 

an improved testing stage for QA model with limited unpredictability. At that point, the new 

ACO based method is likewise utilized for producing the test information to meet the made 

arrangement of ways. The outcomes show that better testing is refined by utilizing the new ACO 

put together procedure with respect to segment based programming. This procedure ensures total 

programming inclusion with least measure of repetition. 

Ma et al (2016) presents a novel plan for the execution of lesser freaks while holding simply a 

similar degree of proficiency as produced by transformation testing utilizing a total arrangement 

of freaks [7]. This procedure plays out the dynamic grouping of articulation level pitifully 

murdered freaks, which are foreseen to produce a similar outcome under an experiment; only one 

freak from each bunch is totally executed under the experiment. This procedure was actualized 

and its exhibit demonstrated that it productively limited the cost of transformation testing with no 

misfortune in the adequacy. 

Bashir et al (2017) showed an enhanced genetic algorithm, which can minimize the 

computational expense of mutation testing [8]. At first, it introduces a new state-based and 

control-specific fitness function, which makes efficient use of object-oriented program features 

for the evaluation of a test case. After this, it does the empirical evaluation of it employing this 

tool implemented, eMuJava, and then performs its comparison with standard fitness function. 

Results indicate that even though the new fitness function yields detailed information regarding 

the fitness of a test case but the standard genetic algorithm is quite not capable of making use of 

that with efficiency in order to correct the test cases. Therefore, new two-way crossover and 

adaptable mutation techniques, which intelligently utilize the fitness information for generating a 

fitter offspring is proposed. At last the enhanced genetic algorithm with random testing, standard 

genetic algorithm, and EvoSuite are compared. The experimental results illustrate that this new 

technique can detect the optimal test cases in lesser attempts (minimizes the computational 

expense). Also, it can find the software bugs from doubtfully equivalent mutants and these 

mutants are eventually killed (maximizes mutation score). 

Devorey et al., (2016) utilized a new approach for the test case generation based on the 

application [9]. Here, the applications where the test cases generated are smart card system. The 

mutants are generated for using the card system based on its features. Due to the higher level of 

information is used for the test case generation. It reduces the number of test cases for the 

testing. It is possible by generating the conditions for the mutants using the higher order features 



Minimization Of Cost For Software Based Mutation Testing Using Surrogate Optimization 

Approach 

3172 

from the program as compared enumerated mutation testing process. It able to analyse the 

system effectively with high mutation score and minimum time for processing it. 

Panichella et al., (2017) utilized the mutliobjective concept for generating the test cases for an 

application [10]. Here, the test cases are generated based on the concept of minimize the cost for 

coverage testing as fitness function Due to this, the number of test cases generated is high and 

effective one as compared to the traditional test case generation using multiple objective method. 

It able to increase the chances of killing of mutants and analyse all the possible conditions in the 

snippet for hacking. 

The organization of the paper is arranged by explaining various techniques in mutation testing in 

the following section. It is followed by merits and demerits of the improved genetic algorithm 

and other evolutionary mutation testing in section 3. Section 4 elaborates the working surrogate 

based mutation testing. It is followed by implementation procedure and its discussion based on 

the results. Finally the paper is concluded by summary and its future extension method. 

2. Literature Survey 

Abuldjayan and Wedan (2018) utilized the higher order mutant concept to reduce the cost for the 

test case generation in the mutation testing [11]. Because, the higher order mutants are able to 

process the data effectively with the minimum number of test cases for a snippet. It results in the 

minimum computational time and cost for the mutation testing. To further reduce the 

computational complexity, the genetic algorithm were used for creating the optimal number of 

higher order mutant generation for a given snippet. It is tested on the sample code and evaluated 

using the mutation score. The mutation score is acted as the fitness function for the optimization 

process. this technique able to improve the result by 4% as compared to the other types of test 

case generation scenarios. 

Zhang et al., (2018) utilized the prediction process for the test case generation in mutation testing 

[12]. Here, a classification model is built based on the test case and its corresponding nature that 

is it is killed or not. Based on this trained network, the future test cases for various applications 

can able to identify whether the corresponding mutant is able to kill or not. By this, the 

computational time for the test case generation and execution is reduced as compared to the 

traditional mutation testing. But, it able to predict accurately only for the limited number of 

mutants as compared to the other mutant testing process. 

Chen and Zhang (2018) analysed the various approaches in minimize the test case generation 

using the regression test analysis [13]. Here, the survey on various approaches for the test case 

generation in the mutation testing process. it collects various test case scenarios using regression 

technique is collected. Then, those information were used as the format for the test case 

generation based on the regression test. This approach is able to reduce the computational time in 

the generation of test cases due to the forecasting and repeated analysis. But, the processing time 

for the test case will be high for getting high mutant score. 
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Ferrari et al., (2018) discussed about the various techniques utilized to reduce the mutation 

testing [14]. Here, the techniques which are available for reducing the computational time and 

cost for generating and processing the test cases using various approaches were discussed. It 

gives a clear idea about how the test case generation time can be reduced and what are the fitness 

functions that are required for reducing the test cases. It states that the test case can be generated 

based on the corresponding function and the fitness function is responsible for the test case 

analysis in mutation testing. 

Khari et al., (2018) studied about the role of optimization algorithms like artificial bee colony 

and cuckoo search optimization in selecting the proper test cases for mutation testing is 

performed [15]. Here, the test cases are generated based on their property. Then, the optimal test 

from the suit is determined with the help of optimization algorithms. The five test suites for the 

case generation are boundary based, robustness based, worst case scenario, immediate worst case 

scenario and random test scenario. The optimization algorithms will work on the above test 

suites to generate the test cases for a problem automatically. The optimization helps to improve 

the performance and speed up the test case generation. It is highly preferred for the single level 

code based testing. 

Carlvaho et al (2018) used the empirical study approach for analysing the pre-processor 

directives based mutation testing [16].  Generally, a part of the snippet only analysed but there is 

a chance of problem in the pre-processor directive access by creating a fault statements. This 

problem is overcome by using the empirical study analysis on the directives to create the test 

case generation and its effect on it. It is observed that this type of testing shows that some little 

modifications in defining the pre-processor directive will produce the same result as original. It 

leads to a problem in the higher stage analysis. Hence, a proper test case generation should be 

considered for the pre-processor drives and the smaller programs. 

Ghiduk et al., (2018) proposed an approach in reducing the computational time for the higher 

order mutant generation [17]. Generally, the higher order mutants are framed with the help of 

combining the first order mutants. But, it results in high processing time and not able to detect 

the optimal higher order mutant. To overcome this problem, three techniques were used to 

reduce the higher order mutant generation time and to select the optimal mutant value. The three 

techniques were same category with repeated values, even-even or odd-odd, or the second 

category with repetition. These techniques were able to reduce the higher order mutants as 

compared to the combinational approach. But, the technique has to be properly selected. 

Sanchez et al., (2018) utilized the evolutionary concept in the mutation testing process [18]. 

Usually, the mutation testing is performed by evaluating the test cases for the program by 

changing the function names or the operators in it. But, it leads to highly expensive one and also 

it causes a great drawback in the processing time. It overcome by using the searching mechanism 

to identify the proper mutants for the testing. It is performed with the help of evolutionary 

algorithms to determine the optimal mutant cases for the testing and its performance is evaluated. 
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Zhu et al., (2018) surveyed the role of compression techniques in one of the white box testing 

mechanism named mutation [19]. In this, the compression techniques were used to increase the 

testing process. first, the mutants and the cases were clustered using overlapping and formal 

concept analysis. Then, the mutation is weighted based on its reachable and necessary state. 

Using this, the stronger and weaker mutants are generated. Then, the weaker mutants are 

compressed and only the stronger mutants were used for the analysis. It able to speed up the 

process but, sometimes the important mutant may be destroyed due to the suppressing 

mechanism. 

Hooda and Chillar (2018) used the optimization and machine learning approach to generate the 

test cases in mutation testing [20]. Because, in normal mutation testing the redundancy of test 

case is higher is due to the doubtful nodes which has no effect in the output in both the original 

and mutant program. This problem is overcome by generating the test cases using genetic 

algorithm. The genetic algorithm used the cross over operator to generate different possiblities of 

the test cases. Then, the optimal test cases are selected based on the feedback from the output 

using the artificial neural network. It able to reduce the redundancies but there is a chance in the 

redundancy due to the mutation operator. NEH-Heurestic model is reviewed in [22]. 

3. Existing method 

Mutation testing is performed to determine the possible vulnerabilities in the program. A 

successful test is achieved only if it able to kill all the mutants in the program. Otherwise the 

testing process will be performed till it kill all the mutants. Due to this, it require high processing 

time and also requires high cost for the testing process. To overcome this problem, the 

evolutionary based testing is introduced to reduce the time for the test cases generation in the 

mutation testing. Several techniques like genetic algorithm, random testing and improved genetic 

algorithm were implemented. Those methods were utilized by only one cost function which is 

based on the sufficient cost. This problem is overcome by using the three types of cost function 

which includes all the possibilities of the test case generation in the mutation testing. This fitness 

function is used in the improvised version of the genetic algorithm. Here, the two way cross 

operator is implemented to reduce the cost for the fitness function evaluation. Those functions 

were able to reduce the time for the test case generation as compared to the traditional 

evolutionary testing mechanism. This method is tested on the java snippets for the combined 

programs. It has the following merits: 

• It reduces all types of costs for the mutant generation. 

• It requires the minimum number of iterations for processing. 

• It reduces the computational overhead of the testing. 

Despite of its major advantages, it requires some modifications to improve the performance 

better and also reduce the time for the convergence rate. Hence, in this, the surrogate based 

optimization is used. This optimization generally finds the minimum value for the function 
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which helps to achieve the convergence rate faster and also to reduce the test case generations. It 

is explained elaborately in the following sections. 

4. Proposed method 

In this, the evolutionary based mutation testing is improved by finding the minimum test case 

generation for mutation testing using surrogate based optimization. The aim of the proposed 

surrogate based optimization in mutation testing is as follows: 

• Reduce the test case generation. 

• Achieve best solution with lesser convergence rate. 

• Reduce the computational cost and overhead problem. 

The above goals can be achieved by finding the minimum value for the objective function. Here, 

the objective function is created based on the three important points in the mutation testing. 

Those points were as follows: 

• Reachable state 

• Necessary state 

• Control state. 

The detail explanation for the above states can be explained with the help of the following 

psuedocode. The psuedocode is to determine the square of a larger number between the two 

numbers is shown in the below figure 1. 

Figure 1. Psuedocode for square of a larger number 

 

The above figure 1 utilize all the three states for the mutant generations. The role of each state in 

mutant generation is explained below: 

4.1. Reachable state: 

The reachable state is used for the evaluations of the conditions of the program. It is mainly used 

to evaluate the, if else conditions and other conditions related blocks in the program. In this, the 
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reachable state is evaluated by selecting the, if else conditions of A and B in the figure 1. This 

objective function is further divided into two categories to evaluate the functions better as 

compared to simple reachable state functions. 

The categories of the reachable state is as follows: 

• Nature of state (Ns) 

• Coverage of state (Cs) 

Based on this, the reachable state is given using the following equation 1. 

𝑅𝑠 = { 𝑁𝑠, 𝐶𝑠} (1) 

 

1.1.1 4.1.1. Nature of state: 

The nature of state is to determine the output of the, if condition in the loop. If the condition is 

satisfied, then the state nature will be 1 otherwise 0. It is calculated using the distance between 

the states as branch distance (Bds). It is given in equation 2. 

𝑁𝑠 = { 𝐵𝑑𝑠} (2) 

 

4.1.2. Coverage of state: 

Then, after the state nature analysis, the distance totally covered by the parameter is considered 

by using the distance between the choices level and the distance between the variables in the 

choices.  

𝐶𝑠 = { 𝐶ℎ𝑜𝑖𝑐𝑒𝑠, 𝐵_𝑉𝑑𝑠} (3) 

 

The term 𝐶ℎ𝑜𝑖𝑐𝑒𝑠 is the difference between the level of the states in the, if condition. The term 

𝐵_𝑉𝑑𝑠}is the distance between the parameters used in the choices. 

By substituting the equations 3 and 2 in 1, the equation 1 becomes as 

𝑅𝑠 = { 𝐵𝑑𝑠, 𝐶ℎ𝑜𝑖𝑐𝑒𝑠, 𝐵_𝑉𝑑𝑠} (4) 

 

The equation 4 shows that the reachable state evaluates all the possible fault conditions and 

generate the test cases based on it. It helps to evaluate the system more effectively. 

4.2. Necessary state: 
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In this, the operators used in the program is analysed. It is performed in the two modes. It is 

given in the following equation 5. 

𝑁𝐸𝑠 = { 𝑂𝑠, 𝐹𝑠} (5) 

 

 The two modes are as follows: 

• Operator mode 

• Function mode 

4.2.1. Operator mode: 

In this, the operators used in the program is changed to generate the test cases. It helps to 

evaluate the relation between the operators and the output of the program. It is given using the 

following equation 5 

𝑂𝑠

= { 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑎𝑛𝑑 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 (𝐴𝐿𝑂) 

 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑} 

(6) 

 

4.2.2. Function mode: 

In this, the parameters used in the calling of a function is changed to generate the test cases. It 

helps to analyse the role of parameters in a calling function. It is given in equation 7. 

𝐹𝑠

= {𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑐𝑎𝑙𝑙𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐶𝐹) 𝑖𝑠 

 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑} 

(7) 

 

Substitute the equations 6 and 7 in equation 5, it becomes, 

𝑁𝐸𝑠 = { 𝐴𝐿𝑂𝑠, 𝐶𝐹𝑠} (8) 

 

4.3. Condition state: 

In this state, the parameters which has no role in the program is determined. Even though the 

parameters is mentioned in the reachable mode, it has no effect on the results. Because, the test 

cases output for those parameters will remain same as the original code. This type of nodes are 

called as the doubtful nodes or suspicious nodes. It is given in the following equation 9. 
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𝐶𝑠 = { 𝑁𝑃} (9) 

 

 The term NP indicates that it has no effect in the test case output. Due to this, the kill of 

the mutant will be reduced and the processing time will be high to kill all the mutants. 

The combined objective function for the surrogate optimization is given in equation 10 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

= { 𝑅𝑠, 𝑁𝐸𝑠, 𝐶𝑠} 

(10) 

 

4.4. Implementation in EmuJava using Surrogate optimization: 

The steps to be used in the mutation testing using emuJava is given below: 

• Initialization 

• Test case generation 

• Objective function evaluation 

• Optimization algorithm 

• Adjustable mutation test cases 

 

1.1.2 4.4.1. Initialization: 

In this, the parameters for the optimization and the tool for the mutation testing is mentioned. 

Here, the search agents are considered as 50 for the mutant generations. 

1.1.3 4.4.2. Test case generation 

In this, the test cases for each mutants is generated by changing the parameters in the program or 

function. In program, the variables and operators are changed which is called as selective 

mutation test case generation. 

If the variables and operators are changed in the function, then it is called as the object oriented 

programming test case generation. 

1.1.4 4.4.3. Objective function evaluation 

The test cases generated for each mutant is evaluated using the equation 10 to determine the 

mutation score. The optimization algorithm is used to maximize the output with minimum test 

cases. The equation 10 is replaced by corresponding values and it becomes, 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

= { 𝐵𝑑𝑠, 𝐶ℎ𝑜𝑖𝑐𝑒𝑠, 𝐵_𝑉𝑑𝑠, 𝐴𝐿𝑂𝑠, 𝐶𝐹𝑠 , 𝐶𝑠} 

(11) 
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The equation 11 shows that the proposed method is able to generate and evaluate all types of test 

case scenario. 

4.4.4. Surrogate optimization 

Surrogate optimization is mainly used for finding the minimum value for an objective function. 

Its main advantage is does not require any pre-process step in the data to smooth its values. The 

other advantage of this method is able to provide the best solution in lesser time interval.  

It find out the minimum test case scenarios of mutation testing by evaluating the objective 

function. The evaluation of the objective function is performed with the help of following two 

process.  

• Explore the search space area. 

• Boost the process to find the minimum test case with minimum iterations. 

The process in the surrogate based optimization is shown in the figure 2. 

 

Figure 2 Surrogate optimization approach 

Step 1: first the Sample points are taken from the data which are responsible for the output. 

Step 2: then, using those sample points, the objective function in equation 11 is evaluated. 

Step 3: then, the model is designed using the sample points and radial basis as its functions. 
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Step 4: again, the test cases are generated based on the model 

Step 5: if (objective function is minimum) 

Step 6: the optimal test case scenario is obtained 

Step 7: otherwise  

Step 8: repeat the step 3. 

Step 9. The process is continues till it reaches the minimum objective function value. 

Step 10: stop. 

1.1.5 4.4.5. Adjustable mutation test cases  

In this, the control state able to determine the doubtful nodes. It helps to remove those mutants 

and then process again for the testing. It helps to reduce the computational time and cost of 

mutation testing. The implementation and its results are discussed in the forthcoming sections. 

5. Implementation and discussion 

In this, the optimized mutation testing using surrogate based optimization is proposed to reduce 

the computational time and cost for the test case generation in the mutation testing. This whole 

process is realized using the emuJava application and by implementation of the proposed 

approach it is updated as emuJava version 3. It requires necessary Netbeans software and the 

other jar files for the implementation process and results. 

The proposed approach is tested on the following snippets: 

• Autodoor 

• Hashtable 

• Stack 

• Cgpa calculator 

• Calculator 

• Triangle 

• Binary search tree. 

The proposed approach is tested on the above snippets to perform mutation testing using 

emuJava. In the emuJava tool, the test is processed for the 10 iterations to kill all the mutants and 

calculate the mutation score. The performance of the optimized mutation testing is evaluated 

based on the following two metrics 

• Mutation score 

• Detection of false statements in the snippet. 

5.1. Mutation score: 
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Mutation score is used as a measure to analyse the algorithm based on the number of kills of the 

test cases. Generally, this value should be higher for an algorithm to pass the mutation testing. It 

is calculated using the following formula. 

𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒

= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑢𝑡𝑎𝑛𝑡𝑠 𝑘𝑖𝑙𝑙𝑒𝑑 

/ total number of mutants 

(11) 

Based on this, the proposed approach surrogate based optimized mutation testing (SBO_MT) is 

evaluated and compared with the existing techniques like Random technique (RT) and improved 

genetic algorithm (IGT) and it is shown in the below table. 

Table 1. Comparison of mutation scores of proposed vs.  Existing techniques 

technique RT IGT SBO_MT 

snippet Iterations Mutation 

score 

(%) 

Iterations Mutation 

score 

(%) 

Iterations Mutation 

score 

(%) 

Autodoor 310 7750 140 3500 135 7751 

Hash table 1052 15375 289 7225 280 8500 

stack 91 26300 208 5200 200 1000 

Cgpa calculator 380 2325 74 1850 65 2000 

calculator 130.93 3250 157 3925 150 4000 

triangle  10800 373 9325 370 9400 

Binary search 

tree 

263 6575 255 6375 350 6450 

From the table 1, it is observed that the proposed surrogate based mutation testing is able to 

improve the mutation score with minimum number of iterations to kill the maximum number of 

mutants. Due to this, the number of test cases generated will also be reduced. The pictorial 

format of the table 1 is shown in the below figure, 

 

Figure 3. Comparison of mutation score versus iteration 
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From the figure 3, it is observed that the proposed techniques require only minimum number of 

iterations to kill more number of mutants as compared to the existing technique. Due to this, the 

computational time for creating the test cases and process for killing the mutants is reduced. 

5.2. Detection of false statements in the snippet: 

There is a chances of errors in the snippet which results in the non-stop processing of the data. 

Due to this, it repeats the loop unconditionally which results in unconditional time to kill the test 

cases. Hence, the test case should be able to determine such conditions effectively. Based on this, 

the identification of false condition based on the three states of the proposed surrogate based 

mutation testing and improved genetic algorithm testing is shown in the table. 

Table 2. Comparison of mutation score for false statement identification 

Snippet IGT (%) SBO_MT 

(%) 

Autodoor 82 90 

Hash table 74 80 

stack 85 89 

Cgpa 

calculator 

76 82 

calculator 86 91 

triangle 50 52 

Binary 

search tree 

74 78 

Table 2 is shown in the pictorial format in the below figure 4. 

 

Figure 4. False condition identification 
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From both the evaluations, the proposed approach surrogate based mutation testing able to 

improve the number of mutants killed with minimum number of iterations and it also able to 

determine the unconditional errors in the snippet effectively. Due to this, the proposed surrogate 

based optimization able to reduce the computational time, cost and overhead of the test case 

generation in the mutation testing. 

6. Conclusion 

Mutation testing is performed to determine the possible vulnerabilities in the program. A 

successful test is achieved only if it able to kill all the mutants in the program. Otherwise the 

testing process will be performed till it kill all the mutants. Due to this, it require high processing 

time and also requires high cost for the testing process. Several techniques like genetic 

algorithm, random testing and improved genetic algorithm were implemented. Those methods 

were utilized by only one cost function which is based on the sufficient cost. This problem is 

overcome by using the three types of cost function which includes all the possibilities of the test 

case generation in the mutation testing. Those approaches were suffer from the higher time for 

achieving the convergence for the complex problem and it results in the high computational time. 

This problem is overcome by the surrogate based optimization technique to determine the 

minimum number of the test case generation and lesser convergence rate for determine it. Hence, 

the proposed method surrogate based optimized mutation testing able to reduce the both 

computational overhead and the minimum iterations with high mutation score for all the simple 

and complex programs. Due to the high mutation score in the complex problems, the surrogate 

based mutation testing is best as compared to the improved genetic algorithm based mutation 

testing. 

7. Future works 

In future, the proposed optimization technique will be replaced by human or biological or swarm 

based optimization techniques to evaluate the performance of mutation testing. 
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