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Abstract 

There is a large area of research for automatic sound classification with countless real world applications. Even 

though there is a large body of research in related audio fields such as speech and music, work on the 

classification of environmental sounds is comparatively scarce. Hence, when we observe the recent 

advancements in the field of image classification where convolutional neural networks are used to classify 

images with high accuracy and at scale, we come across questions on applicability of these techniques in other 

domains, such as sound classification, where discrete sounds happen over time. This paper is the analysis of the 

project that tests audio samples and classifies them accordingly using Deep Learning techniques, namely, Multi-

Level Perceptron (MLP) and modified Convolutional Neural Networks (CNN). 

Keywords: Multi-Level Perceptron (MLP), modified Convolutional Neural Networks (CNN) 

 Introduction 

Sounds surround us. Whether directly or indirectly, we are always in contact with audio data. The sounds 

describe the context of our day-to-day operations, based on the conversations we have as we interact with 

people, the music we listen to, and all the various environmental sounds that we hear on daily basis such as 

children playing, street music, engine drilling and other audio data, either consciously or subconsciously, giving 

us information about the environment around us. 

When we input sound in this program, it will automatically classify it into specific categories using Deep 

Learning techniques: Multi-Level Perceptron (MLP) and modified Convolutional Neural Networks (CNN). 

Multi-layer perceptron’s (MLP) are classed as a type of Deep Neural Network as they are composed of more 

than one layer of perceptrons and use non-linear activation which distinguish them from linear perceptrons. 

Their architecture consists of an input layer, an output layer that ultimately make a prediction about the input, 

and inbetween the two layers there is an arbitrary number of hidden layers. Whereas, Convolutional Neural 

Networks (CNNs) build upon the architecture of MLPs but with a number of important changes. Firstly, the 

layers are organized into three dimensions, width, height and depth. Secondly, the nodes in one layer do not 

necessarily connect to all nodes in the subsequent layer, but often just a sub region of it. 

The objective of this project will be to use Deep Learning techniques to classify urban sounds. For this 

project, we will use data set called Urbansound8K. It contains 8732 sound excerpts of urban sounds from 10 

classes. Due to this project, an automatic classification of urban sounds can be made just by testing the audio 

clip via this program. Researchers don’t have to guess on what kind of sound they are hearing. They will get a 

specific result which will include its frequency, time and graph. The main goal of this capstone project is to 
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apply Deep Learning techniques to the classification of environmental sounds, specifically focusing on the 

identification of particular urban sounds. There is a plethora of real world applications for this research, such as: 

• Content-based multimedia indexing and retrieval 

• Assisting deaf individuals in their daily activities 

• Smart home use cases such as 360-degree safety and security capabilities 

• Automotive where recognizing sounds both inside and outside of the car can improve safety 

• Industrial uses such as predictive maintenance 

The assessment measure for this issue will be ‘Classification Accuracy’ which is defined as the percentage of 

accurate predictions. 

Accuracy = correct classifications / number of classifications 

Provided that the dataset would be fairly symmetrical (as we will see in the next section) and that this is a 

multi-class classifier with target data classes that are usually uniform in size, Classification Accuracy was 

deemed to be the best choice metric. 

Other metrics, such as Precision and Recall (or the F1 score when combined), were ruled out because they 

are better suited to classification tasks with a small target class in an unbalanced data set. 

II. Analysis 

 1. Data Exploration and Visualization 

  A. UrbanSound Datatset 

For this project we will use a dataset called Urbansound8K. The dataset contains 8732 sound excerpts (<=4s) 

of urban sounds from 10 classes, which are: 

• Air Conditioner 

• Car Horn 

• Children Playing 

• Dog bark 

• Drilling 

• Engine Idling 

• Gun Shot 

• Jackhammer 

• Siren 

• Street Music 

The accompanying metadata contains a unique ID for each sound excerpt along with it’s given class name. 

A sample of this dataset is included with the accompanying git repo and the full dataset can be downloaded 

from Urbansounds8K official website. 

B. Audio sample file data overview 

These sound excerpts are digital audio files in .wav format. 



Simriti Koul 

7208 

Sound waves are digitised by sampling them at discrete intervals known as the sampling rate (typically 

44.1kHz for CD quality audio meaning samples are taken 44,100 times per second). 

 

Each sample is the amplitude of the wave at a particular time interval, where the bit depth determines how 

detailed the sample will be also known as the dynamic range of the signal (typically 16bit which means a sample 

can range from 65,536 amplitude values). 

This can be represented with the following image: 

 

Therefore, the data we will be analysing for each sound excerpts is essentially a one dimensional array or 

vector of amplitude values. 

C. Analyzing audio data 

For audio analysis, we will be using the following libraries: 

• IPython.display.Audio 

This allows us to play audio directly in the Jupyter Notebook. 

• Librosa 

librosa is a Python package for music and audio processing by Brian McFee and will allow us to load audio 

in our notebook as a numpy array for analysis and manipulation. 

You may need to install librosa using pip as follows: 

pip install librosa 

D. Auditory inspection 

WewilluseIPython.display.Audiotoplaytheaudiofilessowecaninspectaurally. 

importIPython.displayasipd 

ipd.Audio('../UrbanSoundDatasetsample/audio/100032-3-0-0.wav') 

E. Visual Inspection 

We will load a sample from each class and visually inspect the data for any patterns.We willuse librosa to 

load the audio file into an array then librosa.display and matplotlib to display thewaveform. 
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#  Load  imports 

importIPython.displayasipdimportlibrosa 

importlibrosa.display 

importmatplotlib.pyplotasplt 

#Class:AirConditioner 

filename='../UrbanSoundDatasetsample/audio/100852-0-0-0.wav' plt.figure(figsize=(12,4)) 

data,sample_rate=librosa.load(filename) 

_=librosa.display.waveplot(data,sr=sample_rate)ipd.Audio(filename) 

 

#Class: Car horn 

 

#Class: Children playing 
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# Class:Dog bark 

#  Class:  Drilling 

# Class: Engine Idling 
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# Class: Gunshot 

# Class: Jackhammer 

# Class:  Siren 
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# Class: Street music 

 

• Observations 

From a visual inspection we can see that it is tricky to visualise the difference between some of the classes. 

Particularly, the waveforms for repetitive sounds for air conditioner, drilling, engine idling and jackhammer 

are similar in shape. 

Likewise the peak in the dog barking sample is similar in shape to the gun shot sample (albeit the samples 

differ in that there are two peaks for two gunshots compared to the one peak for one dog bark). Also, the car 

horn is similar too. There are also similarities between the children playingand street music. 

The human ear can naturally detect the difference between the harmonics, it will be interesting to see how 

well a deep learning model will be able to extract the necessary features to distinguish between these classes. 

However, it is easy to differentiate from the waveform shape, the difference between certain classes such as 

dog barking and jackhammer. 

F. Dataset Metadata 

HerewewillloadtheUrbanSoundmetadata.csvfileintoaPandadataframe. 

importpandasaspd 

metadata=pd.read_csv('../UrbanSoundDatasetsample/metadata/UrbanSound8K.csv') metadata.head() 
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• Observations 

slice_file_name fsIDstart  endsalience fold classID class_name 

0 100032-3-0-0.wav100032   0.0   0.317551 1 53 dog_bark 

1100263-2-0-117.wav 100263 58.5 62.500000 1 52 children_playing 

2100263-2-0-121.wav 100263 60.5 64.500000 1 52 children_playing 

3100263-2-0-126.wav 100263 63.0 67.000000 1 52 children_playing 

4100263-2-0-137.wav 100263 68.5 72.500000 1 52 children_playing 

   

  G. Class Distributions 

print(metadata.class_name.value_counts()) 

 

children_playing 1000 

dog_bark 1000 

street_music 1000 

jackhammer 1000 

engine_idling 1000 

air_conditioner 1000 

drilling 1000 

siren 929 

car_horn 429 

gun_shot 374 

• Observations 

Here we can see the Class labels are unbalanced. Although 7 out of the 10 classes all have exactly 1000 

samples, and siren is not far off with 929, the remaining two (car_horn, gun_shot) have significantly less 

samples at 43% and 37% respectively. 

This will be a concern and something we may need to address later on. 

H. Audio sample file properties 

Nextwewilliteratethrougheachoftheaudiosamplefilesandextract,numberofaudiochannels,samplerateandbit-

depth. 

#Loadvariousimportsimport pandas as pdimportos 

importlibrosa 

importlibrosa.display 

fromhelpers.wavfilehelperimportWavFileHelperwavfilehelper=WavFileHelper() 

audiodata=[] 
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forindex,rowinmetadata.iterrows(): 

file_name=os.path.join(os.path.abspath('/Volumes/Untitled/ML_Data/UrbanSound/UrbanSound8K 

data=wavfilehelper.read_file_properties(file_name) 

audiodata.append(data) 

#ConvertintoaPandadataframe 

audiodf=pd.DataFrame(audiodata,columns=['num_channels','sample_rate','bit_depth']) 

I. Audio Channels 

Mostofthesampleshavetwoaudiochannels(meaningstereo)withafewwithjusttheonechannel(mono). 

The easiest option here to make them uniform will be to merge the two channels in the 

stereosamplesintoonebyaveragingthevaluesofthetwochannels. 

#numofchannels 

print(audiodf.num_channels.value_counts(normalize=True)) 

2 0.915369 

1 0.084631 

J. Sample Rate 

ThereisawiderangeofSampleratesthathavebeenusedacrossallthesampleswhichisaconcern(rangingfrom96kto8k

). 

Thislikelymeansthatwewillhavetoapplyasample-rateconversiontechnique(eitherup-conversion or down-

conversion) so we can see an agnostic representation of their waveform whichwillallowustodoafaircomparison. 

#sample rates 

print(audiodf.sample_rate.value_counts(normalize=True)) 

 

44100 0.614979 

48000 0.286532 

96000 0.069858 

24000 0.009391 

16000 0.005153 

22050 0.005039 

11025 0.004466 

192000 0.001947 

8000 0.001374 

11024 0.000802 

32000 0.000458 
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K. Bit Depth 

There is also a wide range of bit-depths. It’s likely that we may need to normalise them by taking the 

maximum and minimum amplitude values for a given bit-depth. 

# bit depth 

print(audiodf.bit_depth.value_counts(normalize=True)) 

16 0.659414 

24 0.315277 

32 0.019354 

8 0.004924 

4 0.001031 

L. Other properties 

We may also need to consider normalising the volume levels (wave amplitude value) if this is seen to vary 

greatly, by either looking at the peak volume or the RMS volume. 

2. Algorithms & Techniques 

The proposed solution to this problem is to apply Deep Learning techniques that have proved to be highly 

successful in the field of image classification. 

First we will extract Mel-Frequency Cepstral Coefficients (MFCC) [2] from the the audio samples on a per 

frame basis with a window size of a few milliseconds. The MFCC summarises the frequency distribution across 

the window size, so it is possible to analyse both the frequency and time characteristics of the sound. These 

audio representations will allow us to identify features for classification. 

The next step will be to train a Deep Neural Network with these data sets and make predictions. We will 

begin by using a simple neural network architecture, such as Multi-Layer Perceptron before experimenting with 

more complex architectures such as Convolutional Neural Networks. 

Multi-layer perceptron’s (MLP) are classed as a type of Deep Neural Network as they are composed of more 

than one layer of perceptrons and use non-linear activation which distinguish them from linear perceptrons. 

Their architecture consists of an input layer, an output layer that ultimately make a prediction about the input, 

and in-between the two layers there is an arbitrary number of hidden layers. 

These hidden layers have no direct connection with the outside world and perform the model computations. 

The network is fed a labelled dataset (this being a form of supervised learning) of input-output pairs and is then 

trained to learn a correlation between those inputs and outputs. The training process involves adjusting the 

weights and biases within the perceptrons in the hidden layers in order to minimise the error. 

The algorithm for training an MLP is known as Backpropagation. Starting with all weights in the network 

being randomly assigned, the inputs do a forward pass through the network and the decision of the output layer 

is measured against the ground truth of the labels you want to predict. Then the weights and biases are 

backpropagated back though the network where an optimisation method, typically Stochastic Gradient descent 

is used to adjust the weights so they will move one step closer to the error minimum on the next pass. The 

training phase will keep on performing this cycle on the network until it the error can go no lower which is 

known as convergence. 

Convolutional Neural Networks (CNNs) build upon the architecture of MLPs but with a number of 

important changes. Firstly, the layers are organised into three dimensions, width, height and depth. Secondly, 

the nodes in one layer do not necessarily connect to all nodes in the subsequent layer, but often just a sub region 

of it. 
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This allows the CNN to perform two important stages. The first being the feature extraction phase. Here a 

filter window slides over the input and extracts a sum of the convolution at each location which is then stored in 

the feature map. A pooling process is often included between CNN layers where typically the max value in each 

window is taken which decreases the feature map size but retains the significant data. This is important as it 

reduces the dimensionality of the network meaning it reduces both the training time and likelihood of 

overfitting. Then lastly we have the classification phase. This is where the 3D data within the network is 

flattened into a 1D vector to be output. 

For the reasons discussed, both MLPs and CNN’s typically make good classifiers, where CNN’s in particular 

perform very well with image classification tasks due to their feature extraction and classification parts. I 

believe that this will be very effective at finding patterns within the MFCC’s much like they are effective at 

finding patterns within images. 

We will use the evaluation metrics described in earlier sections to compare the performance of these 

solutions against the benchmark models in the next section. 

3. Benchmark Model 

For the benchmark model, we will use the algorithms outlined in the paper "A Dataset and Taxonomy for 

Urban Sound Research" (Salamon, 2014) [3]. The paper describes five different algorithms with the following 

accuracies for a audio slice maximum duration of 4 seconds using the same UrbanSound dataset. 

Algorithm ClassificationAccuracy 

SVM_rbf 68% 

RandomForest500 66% 

IBk5 55% 

J48 48% 

ZeroR 10% 

 

III. Methodology 

 1. Data Preprocessing & data splitting 

Following on from the previous section, we identified the following audio properties that need preprocessing 

to ensure consistency across the whole dataset: 

                • Audio Channels 

                • Sample rate 

                • Bit-depth 

We will continue to use Librosa which will be useful for the pre-processing and feature extraction. 

A. Audio properties that require normalizing 

FormuchofthepreprocessingwewillbeabletouseLibrosa’sload()function. 

We will compare the outputs from Librosa against the default outputs of scipy’s wavfile 

libraryusingachosenfilefromthedataset. 

 

 

https://librosa.github.io/librosa/generated/librosa.core.load.html
https://librosa.github.io/librosa/generated/librosa.core.load.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.io.wavfile.read.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.io.wavfile.read.html
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B. Preprocessing stage 

   • Sample rate conversion 

By default, Librosa’s load function converts the sampling rate to 

22.05KHzwhichwecanuseasourcomparisonlevel. 

importlibrosa 

fromscipy.ioimportwavfileaswavimportnumpyasnp 

filename='../UrbanSoundDatasetsample/audio/100852-0-0-0.wav' 

librosa_audio,librosa_sample_rate=librosa.load(filename)scipy_sample_rate,scipy_audio=wav.read(filename) 

print('Originalsamplerate:',scipy_sample_rate) 

print('Librosasamplerate:',librosa_sample_rate) 

Originalsamplerate:44100 

Librosasamplerate:22050 

• Bit Depth 

Librosa’sloadfunctionwillalsonormalisethedatasoit’svaluesrangebetween 

1and1.Thisremovesthecomplicationofthedatasethavingawiderangeofbit-depths. 

print('Originalaudiofilemin~maxrange:',np.min(scipy_audio),'to',np.max(scipy_audio)) 

print('Librosaaudiofilemin~maxrange:',np.min(librosa_audio),'to',np.max(librosa_audio)) 

Originalaudiofilemin~maxrange:-23628to27507 

Librosaaudiofilemin~maxrange:-0.50266445to0.74983937 

• Merge audio channels 

Librosawillalsoconvertthesignaltomono,meaningthenumberofchannelswillalwaysbe1. 

importmatplotlib.pyplotasplt 

#Originalaudiowith2channels 

plt.figure(figsize=(12, 4))plt.plot(scipy_audio) 
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#Librosaaudiowithchannelsmergedplt.figure(figsize=(12, 4))plt.plot(librosa_audio) 

  

• Other properties 

At this stage it is not yet clear whether other factors may also need to be taken into account, such as sample 

duration length and volume levels. 

We will proceed as is for the meantime and come back to address these later if it’s perceived to be effecting 

the validity of our target metrics. 

C. Extract Features 

As outlined in the proposal, we will extract Mel-Frequency Cepstral Coefficients (MFCC) from the the audio 

samples. 

The MFCC summarises the frequency distribution across the window size, so it is possible to analyse both 

the frequency and time characteristics of the sound. These audio representations will allow us to identify 

features for classification. 

• Extracting a MFCC 

ForthiswewilluseLibrosa’smfcc()functionwhichgeneratesanMFCCfromtimeseriesaudiodata. 

mfccs=librosa.feature.mfcc(y=librosa_audio,sr=librosa_sample_rate,n_mfcc=40)print(mfccs.shape) 

(40,173) 

Thisshowslibrosacalculatedaseriesof40MFCCsover173frames. 

importlibrosa.display 

librosa.display.specshow(mfccs,sr=librosa_sample_rate,x_axis='time') 

 

https://librosa.github.io/librosa/generated/librosa.feature.mfcc.html
https://librosa.github.io/librosa/generated/librosa.feature.mfcc.html
https://librosa.github.io/librosa/generated/librosa.feature.mfcc.html
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• Extracting MFCC’s for every file 

WewillnowextractanMFCCforeachaudiofileinthedatasetandstoreitinaPandaDataframealongwithit’sclassificat

ionlabel. 

defextract_features(file_name): 

try: 

audio,sample_rate=librosa.load(file_name,res_type='kaiser_fast') 

mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40) 

mfccsscaled=np.mean(mfccs.T,axis=0) 

exceptExceptionase: 

print("Errorencounteredwhileparsingfile:",file) 

returnNone 

returnmfccsscaled 

#Loadvariousimports 

import pandas as pd 

importos 

importlibrosa 

#SetthepathtothefullUrbanSounddataset 

fulldatasetpath='/Volumes/Untitled/ML_Data/UrbanSound/UrbanSound8K/audio/' 

metadata=pd.read_csv('../UrbanSoundDatasetsample/metadata/UrbanSound8K.csv') 

features=[] 

#Iteratethrougheachsoundfileandextractthefeatures 

forindex,rowinmetadata.iterrows(): 
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file_name=os.path.join(os.path.abspath(fulldatasetpath),'fold'+str(row["fold"])+'/',str(ro 

class_label = row["class_name"]data=extract_features(file_name) 

features.append([data,class_label]) 

#ConvertintoaPandadataframe 

featuresdf=pd.DataFrame(features,columns=['feature','class_label']) 

print('Finishedfeatureextractionfrom',len(featuresdf),'files') 

Finishedfeatureextractionfrom8732files 

D. Convert the data and labels 

Wewillusesklearn.preprocessing.LabelEncodertoencodethecategoricaltextdataintomodel-

understandablenumericaldata. 

fromsklearn.preprocessingimportLabelEncoderfromkeras.utilsimportto_categorical 

#Convertfeaturesandcorrespondingclassificationlabelsintonumpyarrays 

X=np.array(featuresdf.feature.tolist()) 

y=np.array(featuresdf.class_label.tolist()) 

# Encode the classification labels 

le=LabelEncoder() 

yy=to_categorical(le.fit_transform(y)) 

E. Split the dataset 

Herewewillusesklearn.model_selection.train_test_splittosplitthedatasetintotrainingandtestingsets.Thetestings

etsizewillbe20%andwewillsetarandomstate. 

#splitthedataset 

fromsklearn.model_selectionimporttrain_test_split 

x_train,x_test,y_train,y_test=train_test_split(X,yy,test_size=0.2,random_state=42) 

2. Implementation 

A. Initial model architecture – MLP 

We will start with constructing a Multilayer Perceptron (MLP) Neural Network using Keras and a 

Tensorflow backend. 

Starting with a sequential model so we can build the model layer by layer. 

We will begin with a simple model architecture, consisting of three layers, an input layer, a hidden layer and 

an output layer. All three layers will be of the dense layer type which is a standard layer type that is used in 

many cases for neural networks. 

The first layer will receive the input shape. As each sample contains 40 MFCCs (or columns) we have a 

shape of (1x40) this means we will start with an input shape of 40. 
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The first two layers will have 256 nodes. The activation function we will be using for our first 2 layers is the 

ReLU, or Rectified Linear Activation. This activation function has been proven to work well in neural networks. 

We will also apply a Dropout value of 50% on our first two layers. This will randomly exclude nodes from 

each update cycle which in turn results in a network that is capable of better generali sation and is less likely to 

overfit the training data. 

Our output layer will have 10 nodes (num_labels) which matches the number of possible classifi- cations. 

The activation is for our output layer is softmax. Softmax makes the output sum up to 1 so the output can be 

interpreted as probabilities. The model will then make its prediction based on which option has the highest 

probability. 

importnumpyasnp 

fromkeras.modelsimportSequential 

fromkeras.layersimportDense,Dropout,Activation,Flatten 

fromkeras.layersimportConvolution2D,MaxPooling2D 

fromkeras.optimizersimportAdam 

from keras.utils import np_utils 

fromsklearnimportmetrics 

num_labels=yy.shape[1]filter_size=2 

#Construct model 

model=Sequential() 

model.add(Dense(256,input_shape=(40,)))model.add(Activation('relu')) model.add(Dropout(0.5)) 

model.add(Dense(256))model.add(Activation('relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(num_labels))model.add(Activation('softmax')) 

B. Compiling the model 

Forcompilingourmodel,wewillusethefollowingthreeparameters: 

• Lossfunction-

wewillusecategorical_crossentropy.Thisisthemostcommonchoiceforclassification.Alowerscoreindicates

thatthemodelisperformingbetter. 

• Metrics-

wewillusetheaccuracymetricwhichwillallowustoviewtheaccuracyscoreonthevalidationdatawhenwetraint

hemodel. 

• Optimizer-herewewilluseadamwhichisagenerallygoodoptimizerformanyusecases. 

#Compilethemodel 

model.compile(loss='categorical_crossentropy',metrics=['accuracy'],optimizer='adam') 

#Display model architecture summary 

model.summary() 
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#Calculatepre-trainingaccuracy 

score=model.evaluate(x_test,y_test,verbose=0)accuracy=100*score[1] 

print("Pre-trainingaccuracy:%.4f%%"%accuracy) 

 

Layer(type) OutputShape Param# 

================================================================= 

dense_1(Dense) (None, 256) 10496 

activation_1(Activation) (None, 256) 0 

dropout_1(Dropout) (None, 256) 0 

dense_2(Dense) (None, 256) 65792 

activation_2(Activation) (None, 256) 0 

dropout_2(Dropout) (None, 256) 0 

dense_3(Dense) (None, 10) 2570 

activation_3(Activation) (None, 10) 0 

================================================================= 

Totalparams:78,858 

Trainableparams:78,858 

Non-trainableparams:0 

Pre-trainingaccuracy:11.5627% 

C. Training 

Herewewilltrainthemodel. 

Wewillstartwith100epochswhichisthenumberoftimesthemodelwillcyclethroughthedata.The 

modelwillimproveoneachcycleuntilitreachesacertainpoint. 

Wewillalsostartwithalowbatchsize,ashavingalargebatchsizecanreducethegeneralisationabilityofthemodel. 

fromkeras.callbacksimportModelCheckpointfromdatetimeimportdatetime 

num_epochs=100 

num_batch_size=32 

checkpointer=ModelCheckpoint(filepath='saved_models/weights.best.basic_mlp.hdf5', 

verbose=1,save_best_only=True) 
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start=datetime.now() 

model.fit(x_train,y_train,batch_size=num_batch_size,epochs=num_epochs,validation_data=(x_tes 

duration = datetime.now() - startprint("Trainingcompletedintime:",duration) 

Train on 6985 samples, validate on 1747 samples. 

 

Epoch 

Epoch 

00097:val_lossdidnotimprovefrom 

98/100 

0.42049 

6985/6985[============================

==] 

-2s329us/step -loss: 0.5246 -acc: 0.8241 -val_lo 

Epoch00098:val_lossdidnotimprovefromEpoch99/

100 

6985/6985[============================

==] 

0.42049 

 

-2s347us/step 

 

 

-loss: 

 

 

0.5346 

 

 

-acc: 

 

 

0.8169 

 

 

-val_lo 

Epoch00099:val_lossdidnotimprovefromEpoch100

/100 

6985/6985[============================

==] 

0.42049 

 

-2s351us/step 

 

 

-loss: 

 

 

0.5413 

 

 

-acc: 

 

 

0.8153 

 

 

-val_lo 

Epoch00100:val_lossdidnotimprovefromTrainingc

ompletedintime:0:04:15.582298 

0.42049      

D. Test the model 

Herewewillreviewtheaccuracyofthemodelonboththetrainingandtestdatasets. 

#Evaluatingthemodelonthetrainingandtestingsetscore = model.evaluate(x_train, y_train, 

verbose=0)print("TrainingAccuracy:",score[1]) 

score=model.evaluate(x_test,y_test,verbose=0)print("TestingAccuracy:",score[1]) 

TrainingAccuracy:0.9252684323550465 

TestingAccuracy:0.8763594734511787 

TheinitialTrainingandTestingaccuracyscoresarequitehigh.AsthereisnotagreatdifferencebetweentheTraining 

andTestscores(~5%)thissuggeststhatthemodelhasnotsufferedfromoverfitting. 

E. Predictions 

Herewewillbuildamethodwhichwillallowustotestthemodelspredictionsonaspecifiedaudio.wavfile. 

import librosa 

importnumpyasnp 

defextract_feature(file_name): 

try: 

audio_data,sample_rate=librosa.load(file_name,res_type='kaiser_fast') 

mfccs= librosa.feature.mfcc(y=audio_data, sr=sample_rate, n_mfcc=40) 
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mfccsscaled=np.mean(mfccs.T,axis=0) 

exceptExceptionase: 

print("Errorencounteredwhileparsingfile:",file) 

returnNone,None 

return np.array([mfccsscaled]) 

defprint_prediction(file_name): 

prediction_feature=extract_feature(file_name) 

predicted_vector=model.predict_classes(prediction_feature)predicted_class = 

le.inverse_transform(predicted_vector) 

print("Thepredictedclassis:",predicted_class[0],'\n') 

predicted_proba_vector=model.predict_proba(prediction_feature) 

predicted_proba=predicted_proba_vector[0] 

foriinrange(len(predicted_proba)): 

category=le.inverse_transform(np.array([i])) 

print(category[0],"\t\t:",format(predicted_proba[i],'.32f')) 

F. Validation 

Test with sample dataInitial sanity check to verify the predictions using a subsection of thesample audio 

files we explored in the first notebook.We expect the bulk of these to be classifiedcorrectly. 

#Class:AirConditioner 

filename='../UrbanSoundDatasetsample/audio/100852-0-0-0.wav' print_prediction(filename) 

Thepredictedclassis:air_conditioner 

#  Class:  Drilling 

filename='../UrbanSoundDatasetsample/audio/103199-4-0-0.wav' print_prediction(filename) 

Thepredictedclassis:drilling 

#Class:Streetmusic 

filename='../UrbanSoundDatasetsample/audio/101848-9-0-0.wav' print_prediction(filename) 

Thepredictedclassis:street_music 

#Class:CarHorn 

filename='../UrbanSoundDatasetsample/audio/100648-1-0-0.wav' print_prediction(filename) 

Thepredictedclassis:car_horn 

Observations 

From this brief sanity check the model seems to predict well. One error was observed whereby a car horn 

was incorrectly classified as a dog bark. 

 



Application of Deep Learning in Urban Sounds Classification 

7225 

We can see from the per class confidence that this was quite a low score (43%). This allows follows our 

early observation that a dog bark and car horn are similar in spectral shape. 

G. Other Audio 

Herewewilluseasampleofvariouscopyrightfreesoundsthatwenotpartofeitherourtestortrainingdatatofurthervalid

ateourmodel. 

filename='../Evaluationaudio/dog_bark_1.wav' print_prediction(filename) 

Thepredictedclassis:dog_bark 

filename='../Evaluationaudio/drilling_1.wav' print_prediction(filename) 

Thepredictedclassis:drilling 

filename='../Evaluationaudio/gun_shot_1.wav' print_prediction(filename) 

#sampledataweightedtowardsgunshot-peakinthedogbarkingsampleissimmilarin 

#shapetothegunshotsample. 

Thepredictedclassis:dog_bark 

filename='../Evaluationaudio/siren_1.wav' print_prediction(filename) 

Thepredictedclassis:siren 

ObservationsTheperformanceofourinitialmodelissatisfactoryandhasgeneralisedwell,seemingtopredictwellwh

entestedagainstnewaudiodata. 

3. Refinement 

In our initial attempt, we were able to achieve a Classification Accuracy score of: 

            ▪ Training data Accuracy: 92.3% 

            ▪ Testing data Accuracy: 87% 

We will now see if we can improve upon that score using a Convolutional Neural Network (CNN). 

Feature extraction refinement 

In the previous feature extraction stage, the MFCC vectors would vary in size for the different audio files 

(depending on the samples duration). 

However, CNNs require a fixed size for all inputs which means we will have to revisit the feature extraction 

code that we previously wrote. To overcome this we will zero pad the output vectors to make them all the same 

size.importnumpyasnpmax_pad_len=174 

defextract_features(file_name): 

try: 

audio,sample_rate=librosa.load(file_name,res_type='kaiser_fast') 

mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40) 

pad_width=max_pad_len-mfccs.shape[1] 

mfccs=np.pad(mfccs,pad_width=((0,0),(0,pad_width)),mode='constant') 
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exceptExceptionase: 

print("Errorencounteredwhileparsingfile:",file_name) 

returnNone 

returnmfccs 

#Loadvariousimports 

import pandas as pd 

importos 

importlibrosa 

#SetthepathtothefullUrbanSounddataset 

fulldatasetpath='/Volumes/Untitled/ML_Data/UrbanSound/UrbanSound8K/audio/' 

metadata=pd.read_csv('../UrbanSoundDatasetsample/metadata/UrbanSound8K.csv') 

features=[] 

#Iteratethrougheachsoundfileandextractthefeatures 

forindex,rowinmetadata.iterrows(): 

file_name=os.path.join(os.path.abspath(fulldatasetpath),'fold'+str(row["fold"])+'/',str(ro 

class_label = row["class_name"]data=extract_features(file_name) 

features.append([data,class_label]) 

#ConvertintoaPandadataframe 

featuresdf=pd.DataFrame(features,columns=['feature','class_label']) 

print('Finishedfeatureextractionfrom',len(featuresdf),'files') 

Finishedfeatureextractionfrom8732files 

fromsklearn.preprocessingimportLabelEncoderfromkeras.utilsimportto_categorical 

#Convertfeaturesandcorrespondingclassificationlabelsintonumpyarrays 

X=np.array(featuresdf.feature.tolist()) 

y=np.array(featuresdf.class_label.tolist()) 

# Encode the classification labels 

le=LabelEncoder() 

yy=to_categorical(le.fit_transform(y)) 

#splitthedataset 

fromsklearn.model_selectionimporttrain_test_split 

x_train,x_test,y_train,y_test=train_test_split(X,yy,test_size=0.2,random_state=42) 
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A. Convolutional Neural Network (CNN) model architecture 

We will modify our model to be a Convolutional Neural Network (CNN) again using Keras and a 

Tensorflow backend. 

Again we will use a sequential model, starting with a simple model architecture, consisting of four Conv2D 

convolution layers, with our final output layer being a dense layer. 

The convolution layers are designed for feature detection. It works by sliding a filter window over the input 

and performing a matrix multiplication and storing the result in a feature map. This operation is known as a 

convolution. 

The filter parameter specifies the number of nodes in each layer. Each layer will increase in size from 16, 32, 

64 to 128, while the kernel_size parameter specifies the size of the kernel window which in this case is 2 

resulting in a 2x2 filter matrix. 

The first layer will receive the input shape of (40, 174, 1) where 40 is the number of MFCC’s 174 is the 

number of frames taking padding into account and the 1 signifying that the audio is mono. 

The activation function we will be using for our convolutional layers is ReLU which is the same as our 

previous model. We will use a smaller Dropout value of 20% on our convolutional layers. 

Each convolutional layer has an associated pooling layer of MaxPooling2D type with the final convolutional 

layer having a GlobalAveragePooling2D type. The pooling layer is do reduce the dimensionality of the model 

(by reducing the parameters and subsquent computation require- ments) which serves to shorten the training 

time and reduce overfitting. The Max Pooling type takes the maximum size for each window and the Global 

Average Pooling type takes the average which is suitable for feeding into our dense output layer. 

Our output layer will have 10 nodes (num_labels) which matches the number of possible classifi- cations. 

The activation is for our output layer is softmax. Softmax makes the output sum up to 1 so the output can be 

interpreted as probabilities. The model will then make its prediction based on which option has the highest 

probability. 

importnumpyasnp 

fromkeras.modelsimportSequential 

fromkeras.layersimportDense,Dropout,Activation,Flatten 

fromkeras.layersimportConvolution2D,Conv2D,MaxPooling2D,GlobalAveragePooling2Dfromkeras.optimiz

ersimportAdam 

fromkeras.utilsimportnp_utilsfromsklearnimportmetrics 

num_rows=40 

num_columns=174 

num_channels=1 

x_train=x_train.reshape(x_train.shape[0],num_rows,num_columns,num_channels)x_test=x_test.reshape(x_t

est.shape[0],num_rows,num_columns,num_channels) 

num_labels=yy.shape[1]filter_size=2 

#Construct model 

model=Sequential() 

model.add(Conv2D(filters=16,kernel_size=2,input_shape=(num_rows,num_columns,num_channels),model.

add(MaxPooling2D(pool_size=2)) 
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model.add(Dropout(0.2)) 

model.add(Conv2D(filters=32,kernel_size=2,activation='relu')) model.add(MaxPooling2D(pool_size=2)) 

model.add(Dropout(0.2)) 

model.add(Conv2D(filters=64,kernel_size=2,activation='relu')) model.add(MaxPooling2D(pool_size=2)) 

model.add(Dropout(0.2)) 

model.add(Conv2D(filters=128,kernel_size=2,activation='relu')) model.add(MaxPooling2D(pool_size=2)) 

model.add(Dropout(0.2))model.add(GlobalAveragePooling2D()) 

model.add(Dense(num_labels,activation='softmax')) 

B. Compiling Model 

Forcompilingourmodel,wewillusethesamethreeparametersasthepreviousmodel: 

#Compilethemodel 

model.compile(loss='categorical_crossentropy',metrics=['accuracy'],optimizer='adam') 

#Display model architecture summary 

model.summary() 

#Calculatepre-trainingaccuracy 

score=model.evaluate(x_test,y_test,verbose=1)accuracy=100*score[1] 

print("Pre-trainingaccuracy:%.4f%%"%accuracy) 

 

Layer(type) OutputShape Param# 

================================================================= 

conv2d_11(Conv2D) (None

, 

3

9, 

173,16) 80 

max_pooling2d_11(MaxPooling (None

, 

1

9, 

86,16) 0 

dropout_17(Dropout) (None

, 

1

9, 

86,16) 0 

conv2d_12(Conv2D) (None

, 

1

8, 

85,32) 2080 

max_pooling2d_12(MaxPooling (None

, 

9

, 

42,32) 0 

dropout_18(Dropout) (None

, 

9

, 

42,32) 0 

conv2d_13(Conv2D) (None

, 

8

, 

41,64) 8256 
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max_pooling2d_13(MaxPooling (None

, 

4

, 

20,64) 0 

dropout_19(Dropout) (None

, 

4

, 

20,64) 0 

conv2d_14(Conv2D) (None

, 

3

, 

19,128) 32896 

max_pooling2d_14(MaxPooling (None

, 

1

, 

9,128) 0 

dropout_20(Dropout) (None

, 

1

, 

9,128) 0 

global_average_pooling2d_1 ((None, 128) 0 

dense_13(Dense) (None, 10) 1290 

================================================================= 

Totalparams:44,602 

Trainableparams:44,602 

Non-trainableparams:0 

 

1747/1747[==============================]-9s5ms/step 

Pre-trainingaccuracy:12.0206% 

C. Training 

Here we will train the model.As training a CNN can take a sigificant amount of time, we willstart with a low 

number of epochs and a low batch size. If we can see from the output that 

themodelisconverging,wewillincreasebothnumbers. 

fromkeras.callbacksimportModelCheckpoint 

fromdatetimeimportdatetime 

#num_epochs=12 

#num_batch_size= 128 

num_epochs=72 

num_batch_size=256 

checkpointer=ModelCheckpoint(filepath='saved_models/weights.best.basic_cnn.hdf5', 

verbose=1,save_best_only=True) 

start=datetime.now() 

model.fit(x_train,y_train,batch_size=num_batch_size,epochs=num_epochs,validation_data=(x_tes 
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duration = datetime.now() - startprint("Trainingcompletedintime:",duration) 

Trainon6985samples,validateon1747samples 

Epoch00070:val_lossdidnotimprovefrom0.27239Epoch71/72 

6985/6985[==============================]-14289s2s/step-loss:0.1203-acc:0.9581-val_l 

Epoch00071:val_lossdidnotimprovefrom0.27239Epoch72/72 

6985/6985[==============================]-92s13ms/step-loss:0.1147-acc:0.9596-val_lo 

Epoch00072:val_lossdidnotimprovefrom0.27239 

Trainingcompletedintime:8:57:38.203486 

D. Test the model 

Herewewillreviewtheaccuracyofthemodelonboththetrainingandtestdatasets. 

#Evaluatingthemodelonthetrainingandtestingset 

score = model.evaluate(x_train, y_train, verbose=0) 

print("TrainingAccuracy:",score[1]) 

score=model.evaluate(x_test,y_test,verbose=0)print("TestingAccuracy:",score[1]) 

TrainingAccuracy:0.9819613457408733 

TestingAccuracy:0.9192902116210514 

TheTrainingandTestingaccuracyscoresarebothhighandanincreaseonourinitialmodel.Trainingaccuracyhasincre

asedby~6%andTestingaccuracyhasincreasedby~4%. 

There is a marginal increase in the difference between the Training and Test scores (~6% com-pared to ~5% 

previously) though the difference remains low so the model has not suffered fromoverfitting. 

E. Predictions 

Herewewillmodifyourpreviousmethodfortestingthemodelspredictionsonaspecifiedaudio 

.wavfile. 

defprint_prediction(file_name): 

prediction_feature=extract_features(file_name) 

prediction_feature=prediction_feature.reshape(1,num_rows,num_columns,num_channels) 

predicted_vector=model.predict_classes(prediction_feature) 

predicted_class = le.inverse_transform(predicted_vector) 

print("Thepredictedclassis:",predicted_class[0],'\n') 

predicted_proba_vector=model.predict_proba(prediction_feature) 

predicted_proba=predicted_proba_vector[0] 

foriinrange(len(predicted_proba)): 

category=le.inverse_transform(np.array([i])) 
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print(category[0],"\t\t:",format(predicted_proba[i],'.32f')) 

 

F. Validation 

• Test with sample data 

As before we will verify the predictions using a subsection of the 

sampleaudiofilesweexploredinthefirstnotebook.Weexpectthebulkofthesetobeclassifiedcorrectly. 

#Class:AirConditioner 

filename='../UrbanSoundDatasetsample/audio/100852-0-0-0.wav' print_prediction(filename) 

Thepredictedclassis:air_conditioner 

#  Class:  Drilling 

filename='../UrbanSoundDatasetsample/audio/103199-4-0-0.wav' print_prediction(filename) 

Thepredictedclassis:drilling 

#Class:Streetmusic 

filename='../UrbanSoundDatasetsample/audio/101848-9-0-0.wav' print_prediction(filename) 

Thepredictedclassis:street_music 

#Class:CarHorn 

filename='../UrbanSoundDatasetsample/audio/100648-1-0-0.wav' print_prediction(filename) 

Thepredictedclassis:drilling 

• Observations 

We can see that the model performs well. 

Interestingly, car horn was again incorrectly classifed but this time as drilling - though the per class 

confidence shows it was a close decision between car horn with 26% confidence and drilling at 34% confidence. 

G. Other Audio 

Againwewillfurthervalidateourmodelusingasampleofvariouscopyrightfreesoundsthatwenotpartofeitherourtest

ortrainingdata. 

filename='../Evaluationaudio/dog_bark_1.wav' print_prediction(filename) 

Thepredictedclassis:dog_bark 

filename='../Evaluationaudio/drilling_1.wav' print_prediction(filename) 

Thepredictedclassis:jackhammer 

filename='../Evaluationaudio/gun_shot_1.wav' print_prediction(filename) 

Thepredictedclassis:gun_shot 
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IV. Results 

1. Model evaluation and validation 

During the model development phase the validation data was used to evaluate the model. The final model 

architecture and hyperparameters were chosen because they performed the best among the tried combinations. 

This architecture is described in detail in section 3. 

As we can see from the validation work in the previous section, to verify the robustness of the final model, a 

test was conducted using copyright free sounds from sourced from the internet. The following observations are 

based on the results of the test: 

            ▪ The classifier performs well with new data. 

            ▪ Misclassification does occur but seems to be between classes that are relatively similar such as         

Drilling and Jackhammer. 

2. Justification 

The final model achieved a classification accuracy of 92% on the testing data which exceeded my 

expectations given the benchmark was 68%. 

Model ClassificationAccuracy 

CNN 92% 

MLP 88% 

BenchmarkSVM_rbf 68% 

 

The final solution performs well when presented with a .wav file with a duration of a few seconds and 

returns a reliable classification. 

However, we do not know how the model would perform on Real-time audio. We do not know whether it 

would be able to perform the classification in a timely manner so audio frames are not skipped or the 

classification would be heavily affected by latency. 

Also, we do not know how the classifier would perform in a real world setting. Our study makes no attempt 

to determine the effect of factors such as noise, echos, volume and salience level of the sample. 

V. Conclusion 

 1. Freeform visualization 

It was previously noted in our data exploration, that it is difficult to visualise the difference between some of 

the classes. In particular, the following sub-groups are similar in shape: 

            ▪ Repetitive sounds for air conditioner, drilling, engine idling and jackhammer. 

            ▪ Sharp peaks for dog barking and gun shot. 

            ▪ Similar pattern for children playing and street music. 

Using a confusion matrix we will examine if the final model also struggled to differentiate between these 

classes. 
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The Confusion Matrix tells a different story. Here we can see that our model struggles the most with the 

following sub-groups: 

 

            ▪ air conditioner, jackhammer and street music. 

            ▪ car horn, drilling, and street music. 

            ▪ air conditioner, children playing and engine idling. 

            ▪ jackhammer and drilling. 

            ▪ air conditioner, car horn, children playing and street music. 

This shows us that the problem is more nuanced than our initial assessment and gives some in-sights into the 

features that the CNN is extracting to make it’s classifications. For example, street music is one of the 

commonly classified classes and could be to a wide variety of different samples within the class. 

2. Reflection 

The process used for this project can be summarised with the following steps: 

    1. The initial problem was defined and relevant public dataset was located. 

    2. The data was explored and analysed. 

    3. Data was preprocessed and features were extracted. 

    4. An initial model was trained and evaluated. 

    5. A further model was trained and refined. 

    6. The final model was evaluated. 
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From the initial exploration of the data in step 2, I envisaged that the preprocessing work in step 3 would be 

incredibly time consuming. However, this was actually relatively easy thanks to the Python tool Librosa. I also 

thought that the feature extraction would be a lot trickier but again Librosa shortened the effort required 

immensely. 

MFCC’s we extracted in step 3 perform much better than I had expected. However, we had to revisit the 

extraction process when we transitioned to using a CNN as our model. I did consider revisiting our MLP model 

to see how it performed with the updated feature extraction technique, but unfortunately there was not enough 

time for this. 

Overall, the model performed better than planned. One observation we made during step 2 is that the dataset 

is slightly unbalanced with 2 out of the 10 classes having roughly a 40% sample size of the other 8. However, it 

is unclear whether this is significant enough to have caused any issues. 

 3. Improvement 

If we were to continue with this project there are a number of additional areas that could be explored: 

          ▪ As previously mentioned, test the models performance with Real-time audio. 

            ▪ Train the model for real world data. 

This would likely involve augmenting the training data in various ways such as: 

                • Adding a variety of different background sounds. 

                • Adjusting the volume levels of the target sound or adding echos. 

                • Changing the starting position of the recording sample, e.g. the shape of a dog bark. 

            ▪ Experiment to see if per-class accuracy is affected by using training data of different          

durations. 

            ▪ Experiment with other techniques for feature extraction such as different forms of           

Spectro- grams. 
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