
Nadia Anjum, Dr Srinivasu Badugu

8216

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 7, July 2021: 8216 - 8225

Research Article

A Comparative Study on Classification Algorithms Using Different Feature

Extraction And Vectorization Techniques For Text

Nadia Anjuma, Dr Srinivasu Badugub

aAssistant Professor, Dept of CSE, Stanley College of Engineering and Technology,
bProfessor, Dept of CSE, Stanley College of Engineering and Technology

*Corresponding author: anadiaanjum@stanley.edu.in, bdrsrinivasu@stanley.edu.in

Abstract

We live in a world where information has a great value and the amount of information available in the text

document has risen so that identifying those that are important to us becomes an issue. Because of this data,

divided into categories, the user is able to navigate to the information he wants to obtain. Texts are most of the

data and here text classification comes to the scene.The aim of this paper is to classify the documents

automatically into their classes by comparing different feature extraction and Vectorization techniques.

Classification of document requires machine learning (ML) techniques. The ML techniques that we have

employed to classify the documents are Support Vector Machine (SVM), Naïve Bayes (NB). The various

feature extraction techniques that we have implemented are Stemming and Lemmatization and we note how the

algorithms differ in performance when implemented each of the feature extraction technique and vectorization

approaches. We used two vectorization techniques, such as vectorization of count vector and vectorization of

term frequency inverse document frequency (TF-IDF). The results prove that according to the type of content

and metric, the performance of the feature extraction and vectorization methods are contrasting; in some cases

are better than the others, and in other cases is the inverse..

Keywords: Machine Learning, Support Vector Machine, Naive Bayes, Stemming, Lemmatization,

Vectorization, Text Classification

1. Introduction

Computer-based technologies have transformed the way we live, work, socialize, play, and learn. Recent

advancement in various fields has led to the collection of large amount of data. As the amount of data is huge

that makes managing / analyzing data complex and challenging.

In a customized knowledge management mission, automated text categorization may play an important role,

such as: real-time assignment of files into folder hierarchies; subject recognition to help topic-specific

processing operations. Automatic Text Classification helps the text document to be retrieved. Classification of

document requires machine learning technique. It is a supervised machine learning task.

The Support Vector Machine, proposed by Vapnik, provides a hyper plane that separates the classes with

maximum distance, between two classes of data and has non-linear extensions [1]. It is a supervised

classification algorithm which recently used successfully for many tasks of NLP as text classification [2][3].

SVM algorithm represents the text document as a vector where the dimension is the number of distinct

keywords. If the document size is large then the dimensions are enormous of the hyperspace in text

A Comparative Study on Classification Algorithms Using Different Feature Extraction And

Vectorization Techniques For Text

8217

classification which causes high computational cost. The feature extraction and reduction can be used to reduce

the dimensionality [4].

NB classifiers are statistical classifiers. They can predict class membership probabilities such as the

probability that a given tuple belongs to a particular class. Bayesian classification is based on Bayes’ theorem.

Advantage of using Naïve Bayes algorithm is that it does not require any feature extraction i.e. word to vector

conversion which is required for SVM and it calculates the most probable class of each document which

guarantees that each is labelled or most probably labelled class.

Assumptions:

1) It assumes that the influence of an attribute value on a given class is unconstrained of the values of the

other attributes in the dataset [5]. This assumption has been noted as class conditional independence. It

simplifies computations involved and thus considered “naive” [6].

2) It assumes that each every attribute contributes to the final outcome in equal.

Naïve Bayes Classifier has various models:

1) Gaussian Naïve Bayes (continuous data)

2) Multinomial Naïve Bayes (data with discrete features)

3) Bernoulli Naïve Bayes (binary data)

Since, the BBC corpus has distinct features we opted the multinomial naïve bayes algorithm.

2 Literature Survey

Machine Learning gives better understanding of documents classification. Machine learning is concerned

with development of algorithms that allows computers to “learn” so as to improve the expected performance.

Document classification is a well-established data mining problem and the issue of scientific papers

classification is a specialization of this problem posing its own challenges [7].

Thorsten Joachim’s et al in [8] conclude that with the massive information in the enterprise, organization of

data is needed and using text categorization this problem can be overcome by using SVM avoids catastrophic

failures and yields better results. SVM acknowledges particular properties of text like a, high dimensional space

b, few irrelevant features c, and sparse instance vector. SVM’s ability to generalize well in high dimensional

space makes it easier for application in text categorization and increases its robustness.

Vandana Korde et al in [9] emphasizes that text classification process starts from collecting text document

and then performing pre-processing which is tokenization , stemming, stop word removal and in indexing we

perform term weighing using TF-IDF scheme. Feature selection constructs a vector space which improves

accuracy of text classifier.

In [10] the authors looked for patent to patent similarity in which TF-IDF proved to be more powerful in

decision making applications. A simple TF-IDF technique is compared with more complicated methods or

extensions to TF-IDF.

In[11] the authors implement KNN classification with Stemmed and unstemmed features with train and test

ratio as 60/40. After getting results it’s clear that KNN works best for less number of features.

3 Proposed System

3.1 Methodology

In the proposed system we use BBC corpus contains 2225 documents over five classes. The different classes

are business, entertainment, politics, sports and technology. This dataset contains Business class - 511

documents, Entertainment - 381 documents, Politics - 418 documents, Sports - 512 documents, Technology -

403 documents. The classification algorithms that are being implemented are: Support Vector Machine (SVM)

and Naive Bayes Classifier (NBC).

Nadia Anjum, Dr Srinivasu Badugu

8218

3.2 Architecture of the Proposed System

Data Collection

Data is collected from BBC corpus. This data contains 2225 documents over five categories. This dataset

contains Business class - 511 documents, Entertainment - 381 document, Politics - 418 document, Sports - 512

document, Technology - 403 document.

Pre-processing

Collected data is pre-processed by tokenization, stop word removal and stemming. Document is tokenized

first at paragraph level then by sentence level then to token (word). These tokenized data goes for stop word

removal. Stemming is performed on output of stop word removal and this pre-processed data goes for Naïve

Bayes algorithm and for SVM word to vector conversion.

As SVM algorithm accepts numerical data, so word to vector conversion is required. This is done by

technique One-Hot Encoding technique. Word is converted into vector that is in to number by the presence of

word in a document is indicated by ‘1’ and absence of word is indicated by ‘0’. Thus word to vector conversion

list is created.

We applied label encoding for class label. We assigned business as 0 , entertainment as 1, politics as 2, sport

as 3 and tech as 4.

Tokenization

It is process of separating/ dividing text or sentences into smaller units called tokens. Tokens can take form

of words, subwords or characters. The procedure followed for tokenization is as follows:

Input: c, corpus

Output: t, tokens

For f in c do

tk split f using space as a delimeter

t tk // assign the value of token to t

end for

return t

Stop word removal

Unimportant or unwanted text/data is referred to as stop words in natural language processing. The purpose

is simply removing the words from the corpus that occur most commonly or frequently throughout the corpus.

The procedure followed for stop word removal is as follows:

Input: t, a list of tokens

 e, set of english language stop words

Output: p, pre-processed text

For ti in t do

 For tk in ti do

A Comparative Study on Classification Algorithms Using Different Feature Extraction And

Vectorization Techniques For Text

8219

 if tk not found in e then

 p tk

 end if

 end for

end for

return p

Validation

We use five common different measures for the evaluation of the classification quality: Accuracy, Precision,

Recall, F-Measure and Support. Accuracy is the proportion of the total number of predictions where correctly

calculated. Precision is the ratio of the correctly classified cases to the total number of misclassified cases and

correctly classified cases. Recall is the ratio of correctly classified cases to the total number of unclassified cases

and correctly classified cases. Also, we used the F-measure to combine the recall and precision which is

considered a good indicator of the relationship between them [5].

Fig. 2: Flowchart for tokenization and stop word removal

4 Implementation and Result Analysis:

The project is implemented on google colab cloud for python by installing nltk package for stop word

removal, stemming etc, With the help of [12] and [13] programs were written in python programming language.

The different combinations in which we have implemented the algorithms are as follows:

1) Naive Bayes Classifier with Lemmatization and Count Vector.

2) Naive Bayes Classifier with Lemmatization and TF-IDF vectorization technique.

3) Naive Bayes Classifier with Lemmatization, Count vector and TF-IDF vectorization technique.

4) Support Vector Machine with Lemmatization and Count Vector.

5) Support Vector Machine with Lemmatization and TF-IDF vectorization technique

6) Support Vector Machine with Lemmatization, Count vector and TF-IDF vectorization technique.

5. Results and Visualization

The Naive bayes model when implemented Lemmatization and Count Vector.

Train/Test Ratio: 80/20 Accuracy: 96.4

Confusion Matrix:

Nadia Anjum, Dr Srinivasu Badugu

8220

Table 1. Confusion matrix for Naive

bayes using lemm and count vector

Table 2. Performance metrics for

Naive bayes using lemm and count

vector

 0 1 2 3 4

0 96 0 3 0 1

1 1 70 5 0 1

2 2 0 91 0 0

3 0 0 0 94 0

4 3 0 0 0 78

Class Precisi

on

Recall F1

score

Suppo

rt

0 94 96 95 100

1 100 91 95 77

2 92 98 95 93

3 100 100 100 94

4 97 96 97 81

Avg 96.6 96.2 96.4

The Naive Bayes model when implemented with lemmatization and TF-IDF vectorization technique.

Train/Test ratio: 80/20 Accuracy: 95.7

Table 3. Confusion matrix for Naive

bayes using lemm and TF-IDF vector

Table 4. performance metrics for

Naive bayes using lemm and TF-

IDFvector

 0 1 2 3 4

0 105 0 0 0 1

1 2 74 1 0 0

2 2 0 79 0 1

3 0 0 0 97 0

4 2 0 1 1 79

Class Precisi

on

Recall F1

score

Suppo

rt

0 95 99 97 106

1 100 96 98 77

2 98 96 97 82

3 99 100 99 97

4 98 100 99 83

Avg 98 97.2 97.4

The Naive Bayes model when implemented with lemmatization and TF-IDF vectorization and count vector.

Train/Test ratio: 80/20 Accuracy: 96.85

Table 5. Confusion matrix for Naive

bayes using lemm, count vector and TF-

IDF vector

Table 6. Performance metrics for

Naive bayes using lemm, count vector

and TF-IDF vector

 0 1 2 3 4

0 93 0 3 0 3

1 1 82 1 0 3

2 1 0 83 0 1

3 0 0 0 94 0

4 1 0 0 0 79

Class Precisi

on

Recall F1

score

Suppo

rt

0 97 94 95 99

1 100 94 97 87

2 95 98 97 85

3 100 100 100 94

4 92 99 95 80

Avg 96.8 97 96.8

The SVM model when implemented Lemmatization and Count Vector.

A Comparative Study on Classification Algorithms Using Different Feature Extraction And

Vectorization Techniques For Text

8221

Train/Test Ratio: 80/20 Accuracy: 97.9

Table 7. Confusion matrix for SVM

using lemm and count vector

Table 8. Performance metrics for

SVM using lemm and count vector

 0 1 2 3 4

0 97 0 3 0 1

1 1 74 1 0 1

2 2 0 91 0 0

3 0 0 0 94 0

4 3 0 0 0 80

Class Precisi

on

Recall F1

score

Suppo

rt

0 96 97 97 100

1 100 96 98 77

2 92 98 97 93

3 100 100 100 94

4 99 98 99 81

Avg 98.2 98 98.2

Support Vector Machine with Lemmatization and TF-IDF vectorization technique.

Train/Test ratio:80/20 Accuracy: 98.20

Table 9. Confusion matrix for SVM

using lemm and TF-IDF vector

Table 10. performance metrics for

SVM using lemm and TF-IDF vector

 0 1 2 3 4

0 105 0 0 0 1

1 1 75 1 0 0

2 0 0 81 0 1

3 0 0 0 97 0

4 1 2 0 1 79

Class Precisi

on

Recall F1

score

Suppo

rt

0 98 99 99 106

1 96 97 97 77

2 98 99 98 82

3 99 100 99 97

4 97 95 97 83

Avg 97.6 98 98

Support Vector Machine with Lemmatization, Count vector and TF-IDF vectorization technique.

Train/Test ratio: 80/20 Accuracy: 97.52

Table 11. Confusion matrix for SVM

using lemm, count vector and TF-IDF

vector

Table 12. performance metrics for

SVM using lemm, count vector and TF-

IDF vector

 0 1 2 3 4

0 93 1 2 0 3

1 0 87 0 0 0

2 2 0 82 0 1

3 0 0 0 94 0

4 0 2 0 0 78

Class Precisi

on

Recall F1

score

Suppo

rt

0 98 94 96 99

1 97 100 98 87

2 98 96 97 85

3 100 100 100 94

4 95 97 96 80

Avg 97.6 97.4 97.4

Nadia Anjum, Dr Srinivasu Badugu

8222

Performance visualization of Naive Bayes and SVM respectively.

Fig 3- Comparison of Naïve Bayes Accuracy

Fig 4- Comparison of SVM Accuracy

0

20

40

60

80

100

NB Lemma Covt NB Lemma TF-IDF NB Lemma TF-IDF
Covt

Precision

Precision

Fig 5- Comparison of Naïve Bayes Precision

0

20

40

60

80

100

SVM Lemma Covt SVM Lemma TF-
IDF

SVM Lemma Covt
TF-IDF

Precision

Precision

 Fig 6- Comparison of SVM Precision

98.6 95.7 96.4

0

20

40

60

80

100

NB
Lemma

Covt

NB
Lemma
TF-IDF

NB
Lemma
TF-IDF
Covt

M
e

tr
ic

 V
al

u
e

Accuracy

Accuracy

0
10
20
30
40
50
60
70
80
90

100

SVM
Lemma

Covt

SVM
Lemma
TF-IDF

SVM
Lemma
Covt TF-

IDF

Accuracy

Accuracy

A Comparative Study on Classification Algorithms Using Different Feature Extraction And

Vectorization Techniques For Text

8223

0
10
20
30
40
50
60
70
80
90

100

NB Lemma Covt NB Lemma TF-IDF NB Lemma TF-IDF
Covt

Recall

Recall

Fig 7– Comparison of Naïve Bayes Recall

0
10
20
30
40
50
60
70
80
90

100

SVM Lemma Covt SVM Lemma TF-
IDF

SVM Lemma Covt
TF-IDF

Recall

Recall

 Fig 8- Comparison of SVM Recall

0
10
20
30
40
50
60
70
80
90

100

NB Lemma Covt NB Lemma TF-IDF NB Lemma TF-IDF
Covt

F1-Score

F1-Score

Fig 9- Comparison of Naïve Bayes F1- Score

0
10
20
30
40
50
60
70
80
90

100

SVM Lemma Covt SVM Lemma TF-IDF SVM Lemma Covt
TF-IDF

F1-Score

F1-Score

Fig 10- Comparison of SVM F1-Score

The final comparison between the different combinations of algorithms that we have implemented can be

tabulated as the following:

Table 13- Performance comparison of algorithms

Algorithm Accuracy Precision Recall F1-

Score

NBC Lemmatization Count Vector 96.4 96.6 96.2 96.4

NBC Lemmatization TF-IDF 97.5 98 97.2 97.4

NBC Lemmatization Count Vector

TF-IDF

96.85 96.8 97 96.8

SVM Lemmatization Count Vector 97.9 98.2 98 98.2

Nadia Anjum, Dr Srinivasu Badugu

8224

SVM Lemmatization TF-IDF 98.2 97.6 98 98

SVM Lemmatization Count Vector

TF-IDF

97.52 97.6 97.4 97.4

6. Conclusion and Future Works

In this paper, we implemented Naive Bayes and SVM with different feature extraction technique in

combination with count vectorization and TF-IDF technique on the BBC corpus. As we are partitioning

documents into training and testing sets with different ratios as 60/40, 70/30, 80/20 the accuracy varies, in

general it gave better accuracy for 80 training documents and 20 testing documents division. SVM with

Lemmatization and TF-IDF proved to be the most efficient since the highest accuracy achieved is 98.2 when the

train and test ratio is 80/20. The other combination of SVM also proved to be accurate than Naive Bayes. In the

future, other algorithms like logistic regression or convolution neural networks can be implemented and the

impact of different feature extraction techniques and vectorization techniques can be observed. Also in future,

comparisons can be made by using different versatile datasets.

References

[1] Xu, Z., Li, P., & Wang, Y. (2012). Text classifier based on an improved SVM decision tree. Physics

Procedia, 33, 1986-1991.

[2] Rennie, J. D. (2001). Improving multi-class text classification with naive Bayes (Doctoral dissertation,

Massachusetts Institute of Technology).

[3] Hotho, A., Nürnberger, A., & Paaß, G. (2005, May). A brief survey of text mining. In Ldv Forum (Vol.

20, No. 1, pp. 19-62).

[4] Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant

features. Machine learning: ECML-98, 137-142.

[5] Jiawei Han, Micheline Kambar, Jian Pei, “Data Mining Concepts and Techniques” Elsevier Second

Edition.

[6] S. Roy and A. Garg, "Predicting academic performance of student using classification techniques," 2017

4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics

(UPCON), Mathura, 2017, pp. 568-572.

[7] Akritidis, Leonidas & Bozanis, Panayiotis. (2013). A supervised machine learning classification

algorithm for research articles. Proceedings of the ACM Symposium on Applied Computing. 115-120.

10.1145/2480362.2480388.

[8] Thorsten Joachims. Text categorization with support vector machines: Learning with many relevant

features. In Proceedings of the European Conference on Machine Learning, pages 137–142, 1998

[9] Korde, V.& Mahender, C. (March 2012). Text Classification and Classifiers: A Survey. International

Journal of Artificial Intelligence & Applications (IJAIA), Vol. 3, No. 2, pp. 85-99.

[10] Omid Shahmirzadi, Adam Lugowski, Kenneth Younge. “Text Similarity in Vector Space Models: A

Comparative Study”, 2018.

[11] Shri, Raj & Gaur, Sanjay & Chowdhary, Prof. (2018). Text Classification using KNN with different

Feature Selection Methods.

[12] Python Software Foundation. Python Language Reference, version 3.6. Available at

http://www.python.org

[13] G. van Rossum, Python tutorial, Technical Report CS-R9526, Centrum voor Wiskunde en Informatica

(CWI), Amsterdam, May 1995.

[14] Akritidis, Leonidas & Bozanis, Panayiotis. (2013). A supervised machine learning classification

algorithm for research articles. Proceedings of the ACM Symposium on Applied Computing. 115-120.

10.1145/2480362.2480388.

A Comparative Study on Classification Algorithms Using Different Feature Extraction And

Vectorization Techniques For Text

8225

