On Hesitant QC- Fuzzy Soft Ring

Turkish Online Journal of Qualitative Inquiry (TOJQI) Volume 12, Issue 7, July 2021: 8708 - 8715

Research Article

On Hesitant QC- Fuzzy Soft Ring

¹Dr.N.Sarala, M.Sc.,M.Phil.,B.Ed.,Ph.D., ²Mrs..Dhayalnithi, M.Sc.,B.Ed.,,M.Phil.,

Abstract

The purpose of this paper is to extend the Q-fuzzy soft ring to hesitant QC- fuzzy soft ring. In this paper, we define the hesitant QC- fuzzy soft ring and prove some of their properties and structural characteristics are investigated some related properties ,.then the definition of hesitant QC-fuzzy soft ring and the theorem of homomorphic images are given. In this paper ,we study hesitant QC-fuzzy soft ring. In section 2 we discuss some preliminaries. In section 3 studies notions of hesitant QC –fuzzy soft ring

Keywords: Soft set, Fuzzy soft set, Soft ring, Fuzzy soft ring, Soft homomorphism, Fuzzy Soft isomorphism, Q-fuzzy set, Q-fuzzy soft ring, Hesitant QC-fuzzy soft ring.

1. INTRODUCTION

The theory of soft sets was introduced by Molodtsov [6] ,soft sets theory has been extensively studied by many authors. It is well known that the concept of fuzzy sets, introduced by Zadeh [17], has been extensively applied to many scientific fields. Alam [2] introduced fuzzy rings and anti fuzzy rings with operators Pazar Varol ,Aygunoglu and Aygun [8] introduced on fuzzy soft rings . Marudai and Rajendran [5] introduced fuzzy soft rings on fuzzy lattices .Sarala and suganya [10] introduced the Q- fuzzy soft ring .Torra and Narukawa[14] introduced on hesitant fuzzy sets and decision .

2. PRELIMINARIES

Definition 2.1:

Suppose that U is an initial universe set and E is a set of parameters, let P(U) denotes the power set of U. A pair (F, E) is called a **soft set** over U where F is a mapping given by $F: E \rightarrow P(U)$.

Clearly, a soft set is a mapping from parameters to P(U), and it is not a set, but a parameterized family of subsets of the Universe.

Definition 2.2:

¹Associate Professor, PG & Research Department of Mathematics, Department of Mathematics, A.D.M College For Women, Nagapattinam, Tamilnadu (India), Affiliated to Bharathidasan University.

²Guest Lecturer, Department of Mathematics, Govt college of Arts and science, Nagapattinam. Affiliated to Bharathidasan University.

Let U be an initial Universe set and E be the set of parameters. Let $A \subset E$. A pair (F, A) is called *fuzzy soft set* over U where F is a mapping given by F: $A \rightarrow I^U$, where I^U denotes the collection of all fuzzy subsets of U.

Definition 2.3:

Let X be a group and (f, A) be a fuzzy soft set over X. Then (f, A) is said to be a fuzzy soft group over X iff for each $a \in A$ and $x, y \in X$,

(i)
$$f_a(x, y) \ge T(f_a(x), f_a(y))$$

(ii)
$$f_a(x^{-1}) \ge f_a(x)$$

That is, for each $a \in A$, f_a is a fuzzy subgroup in Rosenfeld's sense [12]

Definition 2.4:

Let (f, A) be a soft set over a ring R. Then (f, A) is said to be a **soft ring** over R if and only if f(a) is sub ring of R for each $a \in A$.

Definition 2.5:

Let (φ, ψ) : X \rightarrow Y is a fuzzy soft function, if φ is a homomorphism from x \rightarrow y then (φ, ψ) is said to be *fuzzy soft homomorphism*. if φ is a isomorphism from $X \to Y$ and ψ is 1-1 mapping from A on to B then (ϕ, ψ) is said to be *fuzzy soft isomorphism*.

Definition 2.6:

Let R be a soft ring. A fuzzy set '\u03c4' in R is called Q- fuzzy soft ring in R if

(i)
$$\mu$$
 (($x + y$), q) $\geq T{\{\mu(x,q), \mu(y,q)\}}$

(ii)
$$\mu(-x,q) \ge \mu(x,q)$$
 and

(iii)
$$\mu((xy), q) \ge T\{\mu(x, q), \mu(y, q)\}$$
, for all $x, y \in R. \& q \in Q$

Definition 2.7:

Let $\widetilde{H}(U)$ be the set of all hesitant fuzzy sets in U, a pair (\widetilde{F}, A) is called a HFSS over U, where \tilde{F} is defined by $\tilde{F}: A \to \tilde{H}(U)$. A hesitant fuzzy soft set is a mapping from parameters to $\widetilde{H}(U)$. It is a parameterised family of hesitant fuzzy subsets of U.

3. Hesitant QC-Fuzzy Soft Rings

Definition 3.1:

Let R be a soft ring. A fuzzy set ' \tilde{f}_{a_a} ' in R is called hesitant QC-fuzzy soft ring in R if

(i)
$$\tilde{f}_a\left((x+y), qe^{i\theta}\right) \ge min\{\tilde{f}_a\left(x, qe^{i\theta}\right), \tilde{f}_a\left(y, qe^{i\theta}\right)\}$$

(ii)
$$\tilde{f}_a(-x, qe^{i\theta}) \ge \tilde{f}_a(x, qe^{i\theta})$$
 and

(i)
$$\tilde{f}_{a}\left((x+y),qe^{i\theta}\right) \geq min\{\tilde{f}_{a}\left(x,qe^{i\theta}\right),\tilde{f}_{a}\left(y,qe^{i\theta}\right)\}$$

(ii) $\tilde{f}_{a}\left(-x,qe^{i\theta}\right) \geq \tilde{f}_{a}\left(x,qe^{i\theta}\right)$ and
(iii) $\tilde{f}_{a}\left((xy),qe^{i\theta}\right) \geq T\{\tilde{f}_{a}\left(x,qe^{i\theta}\right),\tilde{f}_{a}\left(y,qe^{i\theta}\right)\}, for all x,y \in R. \& q \in Q, e^{i\theta} \in C$

Proposition 3. 1:

Every imaginable hesitant QC-fuzzy soft ring \tilde{f}_a is a hesitant QC-fuzzy soft ring of R. **Proof:**

Assume that \tilde{f}_a is imaginable hesitant QC- fuzzy soft ring of R, then we have

$$\begin{split} &\tilde{f}_a((x+y),qe^{i\theta}) \geq \min\{\tilde{f}_{a_a}(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})\}\\ &\tilde{f}_a\left(-x,qe^{i\theta}\right) \geq \tilde{f}_a\left(x,qe^{i\theta}\right) \text{ and }\\ &\tilde{f}_a\left((xy),qe^{i\theta}\right) \geq \min\{\tilde{f}_a\big(x,qe^{i\theta}\big),\tilde{f}_a\big(y,qe^{i\theta}\big)\}, \end{split}$$

$$for \ all \ x,y \in R. \& \ q \in Q, e^{i\theta} \in \mathbb{C}$$
 Since f_a is imaginable, we have
$$\min\{\tilde{f}_a(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})\}$$

$$= \min\{\min\{\tilde{f}_a(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})\},\min\{\tilde{f}_a(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})\}\}$$

$$\leq \min\{\tilde{f}_a(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})\}$$
 and so
$$\min\{\tilde{f}_a(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})\}$$
 and
$$\min\{\tilde{f}_a(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})\}$$
 It follows that
$$\tilde{f}_a((x+y),qe^{i\theta}) \geq \min\{\tilde{f}_a(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})\}$$

$$= \min\{\tilde{f}_a(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})\}$$
 for all $x,y \in R,q \in Q,e^{i\theta} \in C$ Hence \tilde{f}_a is a hesitant QC-fuzzy soft ring of R.

Proposition 3.2:

If \tilde{f}_a is hesitant QC-fuzzy soft ring R and φ is an endomorphism of R, then \tilde{f}_a [φ] is a Hesitant QC-Fuzzy soft ring of R

Proof:

For any
$$x, y \in R$$
, $q \in Q$, $e^{i\theta} \in C$ we have

$$(\mathbf{HQCFSR1})$$

$$(i) \tilde{f}_a [\varphi]((x+y), qe^{i\theta})) = \tilde{f}_a (\varphi((x+y), qe^{i\theta}))$$

$$= \tilde{f}_a (\varphi(x, qe^{i\theta}), \varphi(y, qe^{i\theta}))$$

$$\geq \min\{\tilde{f}_a (\varphi(x, qe^{i\theta})), \tilde{f}_a (\varphi(y, qe^{i\theta}))\}$$

$$\geq \min\{\tilde{f}_a [\varphi](x, qe^{i\theta}), \tilde{f}_a [\varphi](y, qe^{i\theta})\}$$

$$(ii) \tilde{f}_a [\varphi](-x, qe^{i\theta}) = \tilde{f}_a (\varphi(-x, qe^{i\theta}))$$

$$\geq \tilde{f}_a (\varphi(x, qe^{i\theta}))$$

$$\geq \tilde{f}_a [\varphi](x, qe^{i\theta})$$

$$(iii) \tilde{f}_a [\varphi]((xy), qe^{i\theta})) = \tilde{f}_a (\varphi(xy), qe^{i\theta})$$

$$= \tilde{f}_a ((\varphi x, qe^{i\theta}), (\varphi y, qe^{i\theta}))$$

$$\geq \min\{\tilde{f}_a (\varphi x, qe^{i\theta}), \tilde{f}_a (\varphi y, qe^{i\theta})\}$$

$$\geq \min\{\tilde{f}_a (\varphi x, qe^{i\theta}), \tilde{f}_a (\varphi y, qe^{i\theta})\}$$

$$\geq \min\{\tilde{f}_a [\varphi](x, qe^{i\theta}), \tilde{f}_a (\varphi y, qe^{i\theta})\}$$

$$\geq \min\{\tilde{f}_a [\varphi](x, qe^{i\theta}), \tilde{f}_a [\varphi](y, qe^{i\theta})\}$$
Hence $\tilde{f}_a [\varphi]$ is a hesitant QC-fuzzy soft ring of R.

Proposition 3.3:

Let R and R' be two rings and $\varphi: R \to R'$ be a soft homomorphism. If \tilde{f}_a and μ is a hesitant QC -fuzzy soft ring of R then the pre-image $\varphi^{-1}(\tilde{f}_a)$ hesitant QC-fuzzy soft ring of R. **Proof:-**

Assume that μ is a hesitant QC-fuzzy soft ring of R'. Let $x, y \in R \& q \in Q$, $e^{i\theta} \in C$

(i)
$$\tilde{f}_{a \varphi^{-1}(\mu)}((x+y), qe^{i\theta})) = \tilde{f}_{a \mu}(\varphi(x+y), qe^{i\theta}))$$

$$= \tilde{f}_{a \mu}((\varphi x, q e^{i\theta}), (\varphi y, q e^{i\theta}))$$

$$\geq \min \{ \tilde{f}_{a \mu} (\varphi(x, q e^{i\theta})), \tilde{f}_{a \mu} (\varphi(y, q e^{i\theta})) \}$$

$$\geq \min \{ \tilde{f}_{a \varphi^{-1}(\mu)} (x, q e^{i\theta}), \tilde{f}_{a \varphi^{-1}(\mu)} (y, q e^{i\theta}) \}$$

$$\begin{array}{ll} \text{(ii)}\, \tilde{f}_{a_{\varphi^{-1}(\mu)}}(-x,qe^{i\theta}) & = \,\tilde{f}_{a_{\mu}}((\varphi(-x,qe^{i\theta})) \\ & \geq \tilde{f}_{a_{\mu}}(\varphi(x,qe^{i\theta})) \\ & \geq \tilde{f}_{a_{\varphi^{-1}(\mu)}}(x,qe^{i\theta}) \end{array}$$

$$\begin{split} (\text{iii}) \ \tilde{f}_{a_{\varphi^{-1}(\mu)}} \ (\ (xy), qe^{i\theta})) &= \tilde{f}_{a_{\mu}} \ (\varphi \ (xy), qe^{i\theta})) \\ &= \tilde{f}_{a_{\mu}} ((\varphi x, qe^{i\theta} \), (\varphi y, qe^{i\theta})) \\ &\geq \min \{ \tilde{f}_{a_{\mu}} ((\varphi \ (x, qe^{i\theta})), \tilde{f}_{a_{\mu}} (\varphi (y, qe^{i\theta})) \} \\ &\geq \min \{ \tilde{f}_{a_{\varphi^{-1}(\mu)}} \ (x, qe^{i\theta}), \ \tilde{f}_{a_{\varphi^{-1}(\mu)}} \ (y, qe^{i\theta}) \} \end{split}$$

Hence $\varphi^{-1}(\mu)$ hesitant QC-fuzzy soft ring of R.

Proposition 3.4

Let $\varphi: R \to R'$ be an epimorphism and μ be fuzzy soft set in R'. If $\varphi[\mu]$ is hesitant QC-fuzzy soft ring of R' then μ is hesitant QC-fuzzy soft ring of R.

Proof:

Let $x, y \in R$, Then there exist $a, b \in R$ such that $\varphi(a) = x$, $\varphi(b) = y$. It follows that

(HQC-FSR1)

$$\begin{split} \text{(i)} \ \tilde{f}_{a_{\boldsymbol{\varphi}[\boldsymbol{\mu}]}}(\ (\boldsymbol{x}+\boldsymbol{y}),\boldsymbol{q}e^{i\boldsymbol{\theta}})) & = \tilde{f}_{a_{\boldsymbol{\mu}}}(\boldsymbol{\varphi}\ (\boldsymbol{x}+\boldsymbol{y}),\boldsymbol{q}e^{i\boldsymbol{\theta}})) \\ & = \tilde{f}_{a_{\boldsymbol{\mu}}}((\boldsymbol{\varphi}\ \boldsymbol{x},\boldsymbol{q}e^{i\boldsymbol{\theta}}\),(\boldsymbol{\varphi}\ \boldsymbol{y},\boldsymbol{q}e^{i\boldsymbol{\theta}})) \\ & \geq \min \ \{\tilde{f}_{a_{\boldsymbol{\mu}}}\ (\boldsymbol{\varphi}\ (\boldsymbol{x},\boldsymbol{q}e^{i\boldsymbol{\theta}})),\tilde{f}_{a_{\boldsymbol{\mu}}}(\boldsymbol{\varphi}\ (\boldsymbol{y},\boldsymbol{q}e^{i\boldsymbol{\theta}}))\} \\ & \geq \min \ \{\tilde{f}_{a_{\boldsymbol{\varphi}[\boldsymbol{\mu}]}}\ (\boldsymbol{x},\boldsymbol{q}e^{i\boldsymbol{\theta}}),\ \tilde{f}_{a_{\boldsymbol{\varphi}[\boldsymbol{\mu}]}}\ (\boldsymbol{y},\boldsymbol{q}e^{i\boldsymbol{\theta}})\} \end{split}$$

(ii)
$$\begin{split} \tilde{f}_{a_{\varphi[\mu]}}(-x,qe^{i\theta}) &= \tilde{f}_{a_{\mu}}(\varphi(-x,qe^{i\theta})) \\ &\geq \tilde{f}_{a_{\mu}}(\varphi(x,qe^{i\theta})) \\ &\geq \tilde{f}_{a_{\varphi[\mu]}}(x,qe^{i\theta}) \end{split}$$

$$\begin{split} (\mathrm{iii})\, \tilde{f}_{a_{\varphi[\mu]}}\left(\,(xy),\,qe^{i\theta}\,)\right) &= \tilde{f}_{a_{\mu}}(\varphi\,(xy),\,qe^{i\theta}\,)) \\ &= \tilde{f}_{a_{\mu}}\left((\varphi\,x,\,qe^{i\theta}\,),\,(\varphi\,y,\,qe^{i\theta}\,)\right) \\ &\geq \min\left\{\tilde{f}_{a_{\mu}}\left(\varphi\,(x,\,qe^{i\theta}\,),\!\mu\,(\varphi\,(y,\,qe^{i\theta}\,))\right\} \\ &\geq \min\{\tilde{f}_{a_{\varphi[\mu]}}\left(x,\,qe^{i\theta}\,\right),\,\tilde{f}_{a_{\varphi[\mu]}}\left(y,\,qe^{i\theta}\,\right)\right\} \end{split}$$

Hence $\varphi[\mu]$ hesitant QC-fuzzy soft ring of R.

Proposition 3.5:

Onto homomorphic image of a hesitant QC-fuzzy soft ring with the **sup** property is hesitant QC -fuzzy soft ring of R.

Proof:

Let $\varphi: R \rightarrow R'$ be an onto homomorphism of hesitant QC –fuzzy soft rings and let f_a be a **sup** property of hesitant QC-fuzzy soft ring of R.

Let
$$x', y' \in \mathbb{R}^1$$
, and $x_0 \in \varphi^{-1}(x^1)$, $y_0 \in \varphi^{-1}(y')$ be such that $\tilde{f}_a(x_0, qe^{i\theta}) = \sup_{(h, qe^{i\theta}) \in \varphi^{-1}(x')} \tilde{f}_a(y_0, qe^{i\theta}) = \sup_{(h, qe^{i\theta}) \in \varphi^{-1}(x')} \tilde{f}_a(y_0, qe^{i\theta}) = \sup_{(h, qe^{i\theta}) \in \varphi^{-1}(y')} \tilde{f}_a(y_0, qe^{i\theta}) = \sup_{(h, qe^{i\theta}) \in \varphi^{-1}(y')} \tilde{f}_a(y_0, qe^{i\theta})$

Respectively, then we can deduce that

(HQC-FSR1)

$$\begin{array}{ll} \text{(i)} \ \tilde{f_a}^{\varphi}((x'+y'),\,qe^{i\theta}) = & \sup \ \ \tilde{f_a} \ (z,qe^{i\theta}) \\ & (z,qe^{i\theta}) \in \varphi^{-1} \ ((x'+y'),\,qe^{i\theta}) \\ & \geq \min \{ \tilde{f_a}(x_0,\,qe^{i\theta}),\,\tilde{f_a} \ (y_0,\,qe^{i\theta}) \\ & = \min \{ \ \sup \ \ \tilde{f_a}(h,\,qe^{i\theta}) \ \ , \qquad \sup \ \tilde{f_a}(h,\,qe^{i\theta}) \} \\ & (h,\,qe^{i\theta}) \in \varphi^{-1} \ (x',\,qe^{i\theta}) \ \ & (h,\,qe^{i\theta}) \in \varphi^{-1} \ (y',\,qe^{i\theta}) \} \\ & = \min \{ \tilde{f_a}^{\varphi} \ (x',\,qe^{i\theta}) \ ,\, \tilde{f_a}^{\varphi} \ (y',\,qe^{i\theta}) \} \end{array}$$

(HQC-FSR2)

(ii)
$$\tilde{f}_{a}^{\varphi}(-x', qe^{i\theta}) = \sup_{\substack{(z, qe^{i\theta}) \\ (z, qe^{i\theta}) \in \varphi^{-1}(-x', qe^{i\theta})}} \tilde{f}_{a}(z, qe^{i\theta})$$

$$\geq \tilde{f}_{a}(x_{0}, qe^{i\theta})$$

$$\geq \sup_{\substack{(h, qe^{i\theta}) \in \varphi^{-1}(x', qe^{i\theta}) \\ (h, qe^{i\theta}) \in \varphi^{-1}(x', qe^{i\theta})}} \tilde{f}_{a}(x', qe^{i\theta})$$

$$= \tilde{f}_{a}^{\varphi}(x', qe^{i\theta})$$

(HQC-FSR3)

$$\begin{array}{ll} \text{(i)} \ \tilde{f_a}^{\varphi} \ ((x'y'), qe^{i\theta}) & = \sup \ \tilde{f_a} \ (z, qe^{i\theta}) \\ & \quad (z, qe^{i\theta}) \in \varphi^{-1} \ ((x'y'), qe^{i\theta}) \\ & \geq \min \ \{ \tilde{f_a}(x_0, qe^{i\theta}), \tilde{f_a}(y_0, qe^{i\theta}) \} \\ & = \min \ \{ \sup \ \tilde{f_a}(h, qe^{i\theta}) \ , \quad \sup \ \tilde{f_a}(h, qe^{i\theta}) \} \\ & \quad (h, qe^{i\theta}) \in \varphi^{-1} \ (x', qe^{i\theta}) \ \ (h, qe^{i\theta}) \in \varphi^{-1} \ (y', qe^{i\theta}) \} \\ & = \min \ \{ \tilde{f_a}^{\varphi} \ (x', qe^{i\theta}) \ , \tilde{f_a}^{\varphi} \ (y', qe^{i\theta}) \} \end{array}$$

Hence \tilde{f}_a^{φ} is a hesitant QC-fuzzy soft ring of R'

Proposition 3. 6:

Let T be a continuous t-norm and let μ be a soft homomorphism on R. If \tilde{f}_a is hesitant QC-fuzzy soft ring of R, then \tilde{f}_a^{μ} is hesitant QC-fuzzy soft ring of $f_a(R)$.

Proof:

Let
$$A_1 = \mu^{-1}(y_1, qe^{i\theta})$$
, $A_2 = \mu^{-1}(y_2, qe^{i\theta})$ and $A_{12} = \mu^{-1}((y_1 + y_2), qe^{i\theta})$ where $y_1, y_2 \in \tilde{f}_a(R)$, $q \in Q$,

Consider the set

$$A_1 + A_2 = \{x \in R / (x, qe^{i\theta}) = (a_1, qe^{i\theta}) + (a_2, qe^{i\theta}) \}$$

for some $(a_1, qe^{i\theta}) \in A_1$ and $(a_2, qe^{i\theta}) \in A_2$.

If
$$(x, qe^{i\theta}) \in A_1 + A_2$$
, then $(x, qe^{i\theta}) = (x_1, qe^{i\theta}) + (x_2, qe^{i\theta})$
for some $(x_1, qe^{i\theta}) \in A_1$ and $(x_2, qe^{i\theta}) \in A_2$

so that we have

$$\mu(x, qe^{i\theta}) = \mu(x_1, qe^{i\theta}) + \mu(x_2, qe^{i\theta}) = y_1 + y_2$$

Since $(x, qe^{i\theta}) \in \mu^{-1}((y_1, qe^{i\theta}) + (y_2, qe^{i\theta})) = A_{12}$
Thus $A_1 + A_2 \in A_{12}$

It follows that

(i)
$$\tilde{f_a}^{\mu}((y_1+y_2), qe^{i\theta}) = \sup \{\tilde{f_a}(x, qe^{i\theta})/(x, qe^{i\theta}) \in f^{-1}(y_1+y_2, qe^{i\theta})\}$$

 $= \sup \{\tilde{f_a}(x, qe^{i\theta})/(x, qe^{i\theta}) \in A_{12}\}$
 $\geq \sup \{\tilde{f_a}(x, qe^{i\theta})/(x, qe^{i\theta}) \in A_1 + A_2\}$
 $\geq \sup \{\tilde{f_a}((x_1, qe^{i\theta}) + (x_2, qe^{i\theta}))/(x_1, qe^{i\theta}) \in A_1 \text{ and } (x_2, qe^{i\theta}) \in A_2\}$
 $\geq \sup \{(\tilde{f_a}(x_1, qe^{i\theta}), \tilde{f_a}(x_2, qe^{i\theta}))/(x_1, qe^{i\theta}) \in A_1 \text{ and } (x_2, qe^{i\theta}) \in A_2\}$

Since T is continuous. For every $\varepsilon > 0$, we see that if

sup {
$$\tilde{f}_a(x_1, qe^{i\theta}) / (x_1, qe^{i\theta}) ∈ A_1$$
} + $(x_1^*, qe^{i\theta})$ } ≤ δ and sup { $\tilde{f}_a(x_2, qe^{i\theta}) / (x_2, qe^{i\theta}) ∈ A_2$ } + $(x_2^*, qe^{i\theta})$ } ≤ δ

$$T\{\sup\{\tilde{f}_a(x_1,qe^{i\theta}) \ / \ (x_1,qe^{i\theta}) \in A_1\}$$
, $\sup\{\tilde{f}_a(x_2,qe^{i\theta}) \ / \ (x_2,qe^{i\theta}) \in A_2\} + T((x_1^*,qe^{i\theta}),(x_2^*,qe^{i\theta}) \le \varepsilon\}$

Choose
$$(a_1, qe^{i\theta}) \in A_1$$
 and $(a_2, qe^{i\theta}) \in A_2$ such that $\sup \{\tilde{f}_a(x_1, qe^{i\theta}) / (x_1, qe^{i\theta}) \in A_1\} + \tilde{f}_a(a_1, qe^{i\theta}) \le \delta$ and $\sup \{\tilde{f}_a(x_2, qe^{i\theta}) / (x_2, qe^{i\theta}) \in A_2\} + \tilde{f}_a(a_2, qe^{i\theta}) \le \delta$.

Then we have

$$T\{\sup\{\tilde{f}_{a}(x_{1},qe^{i\theta})/(x_{1},qe^{i\theta})\in A_{1}\},\sup\{\tilde{f}_{a}(x_{2},qe^{i\theta})/(x_{2},qe^{i\theta})\in A_{2}\}+T(\tilde{f}_{a}(a_{1},qe^{i\theta}),\tilde{f}_{a}(a_{2},qe^{i\theta})\leq \varepsilon$$

Consequently, we have

$$\begin{split} \tilde{f_{a}}^{\mu} & ((y_{1} + y_{2}), qe^{i\theta}) \geq \sup \{ \ T(\tilde{f_{a}}(x_{1}, qe^{i\theta}), \tilde{f_{a}}(x_{2}, qe^{i\theta})) \ / \ (x_{1}, qe^{i\theta}) \in A_{1}, (x_{2}, qe^{i\theta}) \in A_{2} \} \\ & \geq T(\sup \{ \tilde{f_{a}}(x_{1}, qe^{i\theta}) \ / \ (x_{1}, qe^{i\theta}) \in A_{1} \}, \sup \{ \tilde{f_{a}}(x_{2}, qe^{i\theta}) \ / \ (x_{2}, qe^{i\theta}) \in A_{2} \} \\ & \geq T \ \{ (\tilde{f_{a}}^{\mu} \ (y_{1}, qe^{i\theta}), \tilde{f_{a}}^{\mu} \ (y_{2}, qe^{i\theta}) \} \end{split}$$

Similarly we can show $\tilde{f}_a^{\ \mu}(-x,qe^{i\theta}) \ge \tilde{f}_a^{\ \mu}(x,qe^{i\theta})$ and $\tilde{f}_a^{\ \mu}(xy,qe^{i\theta}) \ge T\{(\tilde{f}_a^{\ \mu}(x,qe^{i\theta}),\tilde{f}_a^{\ \mu}(y,qe^{i\theta})\}$

Hence \tilde{f}_a^{μ} is hesitant QC-fuzzy soft ring of $\tilde{f}_a(R)$.

Proposition 3.7:

Let \tilde{f}_a be a hesitant QC-fuzzy soft ring R and let \tilde{f}_a^* be a hesitant QC-fuzzy set in N defined by $\tilde{f}_a^*(x,qe^{i\theta})=\tilde{f}_a$ $(x,qe^{i\theta})$ +1- $\tilde{f}_a(0,qe^{i\theta})$ for all $x\in N$. Then \tilde{f}_a^* is a normal a hesitant QC-fuzzy subgroup of R

Proof:

$$\begin{split} (\textbf{HQCFSR1}) & \qquad \qquad = \tilde{f}_a((x+y),qe^{i\theta})) = \tilde{f}_a(0,qe^{i\theta}) \\ & \qquad \qquad \geq T(\tilde{f}_a(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})) + 1 - \tilde{f}_a(0,qe^{i\theta})) \\ & \qquad \qquad \geq T(\tilde{f}_a(x,qe^{i\theta}),\tilde{f}_a(y,qe^{i\theta})) + 1 - \tilde{f}_a(0,qe^{i\theta})) \\ & \qquad \qquad \geq T(\tilde{f}_a(x,qe^{i\theta}) + 1 - \tilde{f}_a(0,qe^{i\theta})), (\tilde{f}_a(y,qe^{i\theta}) + 1 - \tilde{f}_a(0,qe^{i\theta})) \\ & \qquad \qquad = T(\tilde{f}_a^*(mx,qe^{i\theta})), \tilde{f}_a^*(my,qe^{i\theta})). \end{split}$$

$$(\textbf{HQCFSR2}) \\ & \qquad \qquad \tilde{f}_a^*(-x,qe^{i\theta}) = \tilde{f}_a(-x,qe^{i\theta}) + 1 - \tilde{f}_a(0,qe^{i\theta}) \\ & \qquad \qquad \geq \tilde{f}_a(x,qe^{i\theta})) + 1 - \tilde{f}_a(0,qe^{i\theta})) \\ & \qquad \qquad = \tilde{f}_a(x,qe^{i\theta}) + 1 - \tilde{f}_a(0,qe^{i\theta})) \\ & \qquad \qquad \leq T(\tilde{f}_a(x,qe^{i\theta})), \tilde{f}_a(y,qe^{i\theta})) + 1 - \tilde{f}_a(0,qe^{i\theta})) \\ & \qquad \qquad \geq T(\tilde{f}_a(x,qe^{i\theta})) + 1 - \tilde{f}_a(0,qe^{i\theta})), (\tilde{f}_a(y,qe^{i\theta})) + 1 - \tilde{f}_a(0,qe^{i\theta})) \\ & \qquad \qquad = T(\tilde{f}_a^*(mx,qe^{i\theta})), \tilde{f}_a^*(my,qe^{i\theta})). \end{split}$$

Conclusion

In this paper we investigate the notion of hesitant QC-fuzzy soft ring. This work focused on hesitant QC-fuzzy soft rings of Q-fuzzy soft ring. To extend this work one could study the some new properties of fuzzy soft sets in other algebraic structure .

References

- [1] Ahmat and kharal, On fuzzy soft sets, (2009), article ID 586507,6 pages
- [2] Alam .M.Z., Fuzzy Rings and Anti Fuzzy Rings with Operators ,ISOR Journal of Mathematics ,Vol 11,Issue 4,ver IV, pp.48-54
- [3] Deepak. D and S.J.John, *Hesitant fuzzy rough sets through hesitant fuzzy relations*, Ann.Fuzzy Math.Inform,8(1)(2014),33-46
- [4] Jayanta Ghosh ,Bivas Dinda and T.K.Samanta , *Fuzzy soft rings and fuzzy soft ideals* ,Int J.Pure Appl.Sci.Technol.,2(2)(2011),pp 66-74
- [5] Marudai .M and Rajendran .V, *Fuzzy Soft Rings on Fuzzy Lattices*, International Journal of Computational Science and Mathematics, Vol 3, no. 2(2011), pp.141-159
- [6] Molodtsov, D. (1999). Soft set theory-first results. Comput. Math. Appl., 37, 19-37.IJST (2012) A4: 1-12 476.
- [7] Onar S., Ersoy B.A and Tckir.U., Fuzzy soft Γ-ring, IJST (2012) A4:469-476
- [8] Pazar Varol .B, Aygunoglu .A and H. Aygun, On Fuzzy Soft Rings, Journal of Hyperstructures 1(2)(2012),1-15

- [9] Rosenfeld, A. (1971). Fuzzy groups. J. Math. Anal. Appl. 35, 512-517
- [10] Sarala N. and Suganya B., *q-Fuzzy soft ring*, International journal of engineering research & technology,vol.4 issue 02 ,pp. 879-882.
- [11] Solairaju A. and Nagarajan R.., Q-fuzzy groups, advanced in fuzzy mathematics.
- [12] Solairaju A. and Nagarajan R., *Q-fuzzy left R-subgroups of near rings with respect to T-norm*, Antarctica Journal of Mathematics, 5(2)(2008), 59-63.
- [13] Solairaju A. and Nagarajan R., *A New structure and construction of Q-fuzzy groups*, Advanced Fuzzy Mathematics, 4(1)(2009), 23-29.
- [14] Torroa and Narukawa, *On hesitant fuzzy sets and decision* in Proceedings of the IEEE International Conference on Fuzzy System,pp.1378-1382,jeju-do,Republic of Korea, August 2009
- [15] Wang.F.Q ,X.Li,and X.H.Chen, *Hesitant fuzzy soft set and its applications in multicriteria decision making*, Journal of Applied Mathematics,vol.2014,Article ID 643785,10 Pages,2014
- [16] Xia.M,Zeshui Xu and Na Chen, Some hesitant fuzzy aggregation operators with their application in group decision making, Group Decision and Negotitation ,22(2)(2013),259-279
- [17] Zadeh L.A, Fuzzy Sets, Information and Control Vol.8,(1965) pp 338-353.