Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 7, July 2021: 9564-9573
Research Article
Zero Divisor Graph of a Commutative Ring

Vitala Seeta ${ }^{1}$

Abstract

The main aim is to relate the theoretic properties of a commutative ring with properties of graph. For a commutative ring, the set of zero-divisors of denoted by $Z(R)$. A simple graph $\Gamma(R)$ is associated with the vertices which are non zero zero-divisors denoted by $Z(R) *=Z(R)-\{0\}$, where for distinct non zero zero-divisors of $\mathrm{R} x, \mathrm{y}$, the vertices x and y are connected by an edge if $\mathrm{x}=0$. This study illustrates the structure of $\Gamma(\mathrm{R})$ and the properties of $Z(\mathrm{R})$. We study when $\Gamma(\mathrm{R})$ can be a complete graph and a star graph and examine the connectivity and diameter and grith of the graph $\Gamma(\mathrm{R})$. We also study $\Gamma(\mathrm{R})$ for non-isomorphic rings. The properties of $\Gamma(\mathrm{R})$, for a commutative ring R and $\mathrm{If} Z(\mathrm{R})$ is an annihilator ideal, and for a local ring R with maximal ideal M are given.

Keywords: Isomorphic rings, annihilator ideal, local ring, maximal ideal, diameter, grith.

Introduction

Beck, I. (1988) in [4], developed the concept of Zero-divisor graph for a commutative ring where he explained the concept of colorings. The same concept of coloring of a ring R which is commutative was given by Anderson, D.D. and Naseer, M. (1993) in [1].

The Zero-divisor graphs for semigroups was studied by DeMeyer, F.R. and McKenie, T. and Schneider, K. (2002) in [6] and by DeMeyer, F.R. and DeMeyer, L. (2005) in [7]. Dolzan and Polona Oblak (2011) in [5] studied on Zero-divisor graph of rings and semi rings.

This study illuminate the structure of $Z(R)$. Define for every pair of zero divisors x and y , if $\mathrm{xy}=0$ or $\mathrm{x}=\mathrm{y}$ then $\mathrm{x} \sim \mathrm{y}$. The relation \sim usually is not transitive, but always reflexive and symmetric. This study proves that \sim is transitive iff $\Gamma(R)$ is complete.

In Section 2, properties of $\Gamma(R)$ along with examples are discussed. In Section 3, Theorems and examples are discussed to show that $\Gamma(R)$ is a complete graph if it is a complete bipartite graph and if $\Gamma(R)$ is of the form $k_{1, n}$, a complete bipartite graph, then $\Gamma(R)$ is a star graph. Properties of $\Gamma(R)$ when R contains annihilator ideal, for a finite local ring R with maximal ideal M , then $\mathrm{M}=Z(R)$ are discussed . In Section 4, $\Gamma(R)$ is connected with diam ≤ 3 and contains a cycle if $\mathrm{g}(\Gamma(R)) \leq 7$ are shown with examples

[^0]Commutative property will be satisfied by many rings. $Z(R)$ denote the zero-divisors of R . The annihilator of a subset S over a ring r denoted by annR is the ideal formed by the elements of the ring that gives zero when multiplied by an element of $S . \mathbb{Z}, \mathbb{Z}_{n}, \mathbb{Q}$ and \mathbb{F}_{q} are, the ring of integers, integers modulo n, rational numbers, and finite field with q elements respectively.

The reference for graph theory concepts are from [9]. A simple graph is a graph structure which has no multiple edges and loops with the vertex set $\mathrm{V}(\mathrm{G})$. G is reffered as connected, if there exists a path from one vertex to other vertex which are distinct. The length of the shortest path between any two vertices x to y is called distance between x and y denoted by $d(x, y)$ (if there exists no path between the vertices x and y then $d(x, y)=\infty) \cdot \operatorname{diam}(\mathrm{G})=\sup \{d(x, y) / x$ and y are vertices of G$\}$ is called the diameter of G . The length of a shortest cycle in is called as grith of G denoted by $\operatorname{gr}(\mathrm{G})$
$\mathrm{G}(\mathrm{gr}(\mathrm{G})=\infty$ if G has no cycles). If any two distinct vertices of G are connected by an edge (adjacent), then G is said to be complete graph. If the vertex set of a graph G can be partitioned in to two disjoint subsets A and B such that two distinct vertices of G are connected by an edge if and only if they are in different vertex sets A and B is called complete bipartite graph, which is denoted by $K_{m, n}$, where number of vertices are $|A|=m$ and $|B|=n$.If one of vertex set has only one element, then G is called a star graph, denoted by $K_{1, n}$.

Properties of $\boldsymbol{\Gamma}(\boldsymbol{R})$

For a commutative ring $\mathrm{R}, \mathrm{Z}(\mathrm{R})$ be set of zero divisors of R . To the ring R with the vertices $Z(R)^{*}=$ $Z(R)-\{0\}$, the set of nonzero-divisors of R . We draw a simple graph $\Gamma(R)$ with the vertices x and y are adjacent in $\Gamma(R)$, if $\mathrm{x} \mathrm{y}=0$ for every pair of $x, y \in Z(R)^{*}$. Thus if R does not contain any zero divisors (Integral domain), then $\Gamma(R)$ is an empty graph. Hence we assume that R cannot be n integral domain.

In this section, Examples of $\Gamma(R)$ and behaviour of $\Gamma(R)$ for non isomorphic rings are given.

Example 2.1. Given are $\Gamma(R)$ for some commutative rings.

Figure 2.1. \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left[X^{2}\right]$

Figure 2.2. $\mathbb{Z}_{9}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $\mathbb{Z}_{3}[X] /\left[X^{2}\right]$

Figure 2.3. \mathbb{Z}_{8}

Figure 2.4. $\mathbb{Z}_{2}[X, Y] /\left[X^{2}, X Y, Y^{2}\right]$

Figure 2.5. \mathbb{Z}_{12}

Figure 2.6. \mathbb{Z}_{14}

Non Isomorphic Rings may have same Structure of $\Gamma(R)$

Structure of $\Gamma(R)$ for non isomorphic rings may be same. Thus the graph properties of two rings cannot decide the existence of isomorphism between them. This will be illustrated by an example.
\mathbb{Z}_{6} and \mathbb{Z}_{8} are non isomorphic rings but the zero-divisor graph of \mathbb{Z}_{6} and \mathbb{Z}_{8} are given by

Figure 2.7. $\mathbb{Z}_{8}=\{0,1,2,3,4,5,6,7\}$

Figure 2.8. $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$

Figure 2.8. $\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$

Figure 2.9. $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$

Graphs that may not be Realized as $\Gamma(R)$ with Less than Four Vertices

All the graphs which are connected with atmost four vertices can be $\Gamma(R)$. Out of the six connected graphs having four vertices, the given three graphs can be $\Gamma(R)$.

Figure 2.10. $\mathbb{Z}_{2} \times \mathbb{F}_{4}$

Figure 2.11. $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$

Figure 2.12. \mathbb{Z}_{25} or $\frac{\mathbb{Z}_{5}[X]}{\left[X^{2}\right]}$

Proposition 2.2.1. Suppose $\Gamma(\mathrm{R})$ with vertices $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and edges $\mathrm{a}---\mathrm{b}, \mathrm{b}---\mathrm{c}, \mathrm{c}---\mathrm{d}$ cannot be realized as $\Gamma(R)$

Proof. Let $\mathrm{Z}(\mathrm{R})=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and are only the above zero divisor relations of a ring R . As $(a+c) b=$ 0 therefore $a+c \in Z(R)$. Therefore $a+c$ is equal to one of $0, \mathrm{a}, \mathrm{b}, \mathrm{c}$ or d. Simple check gives the $(a+c)=b$ as the only possibility. Similarly, $b+d=c$. Therefore b is equal to $a+$ c is equal to $a+b+d$; so $a+d=0$. Thus $b d=b(-a)$, a contradiction. For other two connected graphs having four vertices the proofs are similar.

For any $n \geq 5 \Gamma(R)$ cannot be AN n-GON

$\Gamma(R)$ can always be a triangle or a square. For any $n \geq 5 \Gamma(R)$ cannot be a n-gon. But, for each $n \geq 3$, there exists a $\Gamma(R)$ with an n-cycle. Let $R_{n}=\mathbb{Z}_{2}\left[x_{1}, \ldots . x_{n}\right]=\mathbb{Z}_{2}\left[X_{1}, \ldots . X_{n}\right] / I$, where $I=$ $\left(X_{1}^{2}, \ldots \ldots X_{n}^{2}, X_{1} X_{2}, X_{2} X_{3}, \ldots X_{n} X_{1}\right)$ then $\Gamma\left(R_{n}\right)$ is finite with a cycle of length n .

When $\Gamma(R)$ can be a Complete graph and a STAR Graph

Let R is a Cartesian product of two integral domains A and B denoted by $\mathrm{A} \times \mathrm{B}$. Then $\Gamma(R)$ can be a complete bipartite graph where $|\Gamma(R)|=|A|+|B|-2$.

Example 3.1.

Figure 3.1. $\mathbb{Z}_{3} \times \mathbb{Z}_{5}$ $\left|\Gamma\left(\mathbb{Z}_{3} \times \mathbb{Z}_{5}\right)\right|=3+5-2$

Figure 3.2. $\mathbb{Z}_{4} \times \mathbb{Z}_{5}$
$\left|\Gamma\left(\mathbb{Z}_{4} \times \mathbb{Z}_{5}\right)\right|=4+5-2$

Theorem 3.1. For a commutative ring $\mathrm{R} . \Gamma(R)$ is a complete graph if and only if either R is isomorphic to the cartesian product of \mathbb{Z}_{2} and \mathbb{Z}_{2} or product of x and y are equal to zero for all $\mathrm{x}, \mathrm{y} \in Z(R)$

Proof. Suppose $\Gamma(R)$ is complete, but there exist a $x \in Z(R)$ with $x^{2} \neq 0$. To show that x^{2} is equal to x . If not, then $x^{3}=x^{2} x=0$. Hence the product of x^{2} and $\left(x+x^{2}\right)$ is equal to 0 , with $x^{2} \neq 0$, hence $x^{2} \in Z(R)$. If $x+x^{2}=x$ then $x^{2}=0$ which is a contradiction. This implies $x+x^{2} \neq x$, so $x^{2}=$ $x^{2} x^{3}=x\left(x+x^{2}\right)=0$ but assumed that $\Gamma(R)$ is a complete, hence a contradiction. So $x^{2}=x$. Let $x y=0$ for every pair of $x, y \in Z(R)$. That implies the graph is complete. Hence $\Gamma(R)$ is complete.

When $\Gamma(R)$ can be a Star Graph

$\Gamma(R)$ is a star graph if $A=\mathbb{Z}_{2}$, with $|\Gamma(R)|=|B|$. For example $\Gamma\left(\mathbb{F}_{p} \times \mathbb{F}_{q}\right)=K_{p-1, q-1}$ and $\Gamma\left(\mathbb{F}_{2} \times \mathbb{F}_{q}\right)=K_{1, q-1}$. Given are two examples.

Figure 3.3. $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$

Figure 3.4. $\mathbb{Z}_{2} \times \mathbb{Z}_{7}$
$\Gamma(R)$ can be an infinite (i.e., a ring has no zero-divisors). If $\Gamma(R)$ is finite (i.e., a ring has finite number of zero-divisors), then $\Gamma(R)$ can be drawn. Often we restrict to the case such that R is a finite ring. Each element r of ring R is either a unit element or a zero-divisor only if R is finite, every prime ideal of R is an annihilator ideal, R is local if and only if all non unit of R is nilpotent. For some prime p and integer $n \geq 1$, char $\mathrm{R}=p^{n}$ if and only if R is a finite local ring with the maximal ideal M . Hence the maximal ideal which is equal to $\mathrm{Z}(\mathrm{R})$ is a p-group, therefore $|\Gamma(R)|=p^{m}-1$ for a $m \geq 0$.

Theorem 3.2. If either R is finite ring or an integral domain then $\Gamma(R)$ is finite where R is a commutative ring.

Proof. Let $\Gamma(R)=Z(R)^{*}$ is non empty and finite. This implies there exists a nonzero $x, y \in R$ with $x y=0$. Suppose $I=\operatorname{ann}(x)$, then $I \subseteq Z(R)$ is always finite and $r y \in I$ for all elements r from R. If R is infinite, then there exists an i from I with $J=\{r \in R \backslash r y=i\}$ is infinite. Hence for $r, s \in$ $J,(r-s) y=0$, therefore $\operatorname{ann}(y) \subseteq Z(R)$ is a infinite, and is a contradiction. Hence R is finite.

Theorem 3.3. If either $R \cong \mathbb{Z}_{2} \times A$, where A is an integral domain, or $\mathrm{Z}(\mathrm{R})$ is an annihilator ideal then in $\Gamma(R)$ there exists a vertex which is adjacent to every other vertex.

Proof. Let $Z(R)$ is not an annihilator ideal and let a be a nonzero element of $Z(R)$ which is having an edge to every other vertex. Now $a \notin \operatorname{ann}(A)=I$, otherwise $Z(R)=I$ is an annihilator ideal. Hence I is the maximal among annihilator ideals and therefore it is a prime ideal. If $a^{2} \neq a$, then $a^{3}=a^{2} a=$ 0 , this implies $a \in I$, which is a contradiction. Thus $a^{2}=a$: so $R=R a \oplus R(1-a)$.

Therefore we suppose that $R=R_{1} \times R_{2}$ with $(1,0)$ is having an edge to every other vertex. For any $1 \neq c \in R_{1},(c, 0)$ is a zero divisor $\operatorname{so}(c, 0)=(c, 0)(1,0)=(0,0)$ is a contradiction unless $c=0$. Therefore R_{1} is somorphic to \mathbb{Z}_{2}. If R_{2} is not an integral domain, then there exists a non zero $b \in$ $Z\left(R_{2}\right)$. Then ($1, \mathrm{~b}$) is a zero-divisor of R which is not adjacent to (1,0), a contradiction. Thus R_{2} must be an integral domain, then there exists a non zero $b \in Z\left(R_{2}\right)$. This implies $(1, b)$ is zero-divisor of R which is not having an edge to $(1,0)$, a contradiction. Thus R_{2} must be an integral domain. Among annihilator ideals, if $Z(R)$ is an annihilator ideal, then it is maximal and therefore is a prime. If $R \cong$ $\mathbb{Z}_{2} \times A$ which is an integral domain, then $(1,0)$ will have an edge to every other vertex. If $Z(R)=$ $\operatorname{ann}(x)$ for a non zero $x \in R$, then x is connected by an edge with every other vertex.

Example 3.3

Let $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{7} . \Gamma(R)$ is given below.

Figure 3.5. $\mathbb{Z}_{2} \times \mathbb{Z}_{7}$

Example 3.4.

Let $R \cong \mathbb{Z}_{6}=\{0,1,2,3,4,5\} . Z(R)=\{0,2,4\}=\operatorname{ann}(3)$ is an annihilator ideal hence 3 is connected by an edge to every other vertex of $\Gamma(R)$.

Figure 3.6. \mathbb{Z}_{6}
Both the cases above theorem will be for the same graph. R should be of the form $\mathbb{Z}_{2} \times A$ for an integral domain if R is reduced and $\Gamma(R)$ has a vertex which is connected by an edge to all other vertices.

The proof of the Theorem 3.3 shows that if there is a vertex of $\Gamma(R)$ which is which is connected by an edge to every other vertex, then either x is idempotent with $R x=\{0, x\}$ which is nothing but a prime ideal of R , or $Z(R)=\operatorname{ann}(x)$ Let $Z(R)$ is an annihilator ideal, then $\operatorname{ann}\left(Z(R)^{*}\right)$ is the set of vertices which are having edges to every other vertex.

Corollary 3.1. If R is local or if $R \cong \mathbb{Z}_{2} \times F$, where F is finite field, then there is a vertex of $\Gamma(R)$ which is connected by an edge with every other vertex. Moreover, $|\Gamma|=|F|=p^{n}$ if $R \cong \mathbb{Z}_{2} \times F$, and $|\Gamma|=p^{n}-1$ if R is a local ring for some prime p and integer $n \geq 1$ for some commutative ring R .

Example 3.5.

Let $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{5}$

Figure 3.5. $\mathbb{Z}_{2} \times \mathbb{Z}_{5}$
Let $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3}$

Figure 3.6. $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$
Example 3.6. Let $R \cong \mathbb{Z}_{6}$ is local, since $\mathbf{M}=\{2,3,4\}$ is the only maximal ideal of $R \Gamma(R)$ is given as

Figure 3.7. \mathbb{Z}_{6}

Diameter and Grith of $\Gamma(R)$

All $\Gamma(R)$ are all connected and have small (≤ 3) diameter and grith. Hence, for not equal $x, y \in Z(R)^{*}$ either $x y=0, x z=y=0$ for a $z \in Z(R)^{*}-\{x, y\}$, or $x z_{1}=z_{1} z_{2}=z_{2} y=0$ for some distinct $z_{1}, z_{2} \in Z(R)^{*}-\{x, y\}$.

Theorem 4.1. Let R be a commutative ring. Always $\Gamma(R)$ is connected with $\operatorname{diam}(\Gamma(R)) \leq 3$, $\operatorname{gr}(\Gamma(R)) \leq 7$, if $\Gamma(R)$ contains a cycle.

Proof. Suppose that $x, y \in Z(R)^{*}$ are distinct. If $x y=0$, then $d(x, y)=1$. Let $x y$ is nonzero. If $x^{2}=$ $y^{2}=0$ then $x-x y-y$ length of the path is 2 ; hence $d(x, y)=2$. If $x^{2}=0$ and $y^{2} \neq 0$, then there exists $a, b \in Z(R)^{*}-\{x, y\}$ with $b y=0$. If $b x=0$, then $x-b-y$ length of the path is 2 . If $b x \neq$ 0 , then $x-b x-y$ length of the path is 2 . In either case, $d(x, y)=2$.

Hence a similar argument holds for $y^{2}=0$ and $x^{2} \neq 0$. Thus we assume that $x^{2}, x y, y^{2}$ are all nonzero. Therefore $a x=b y=0$ for some $a, b \in Z(R)^{*}-\{x, y\}$ with. If $a=b$, then $x-a-y$ length of the path is 2 . So that we may assume that $a \neq b$. If ab $=0$ then $x-a-b-y$ length of the path is 3, thus $d(x, y) \leq 3$. If $a b \neq 0$ then $x-a b-y$ length of the path is 2 , thus $d(x, y)=2$. Therefore $d(x, y) \leq 3$ with $\operatorname{diam}(\Gamma(R)) \leq 3$.

Example 4.1.

In $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$, the path. $(0,1)-(1,0)-(0,2),(1,0)$, shows that $\operatorname{diam}(\Gamma(R))=3$.

Figure 4.1. $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$
If $R \cong F \times K$ for finite fields F and $\mathrm{K}|F|,|K| \geq 3$ for a finite commutative ring with then $\operatorname{gr}(\Gamma(R))=$ 4.

Example 4.2.

Let $R \cong \mathbb{Z}_{4} \times \mathbb{Z}_{5}$, where \mathbb{Z}_{5} is a finite field with $\left|\mathbb{Z}_{5}\right| \geq 3$.

Figure 4.2. $\mathbb{Z}_{4} \times \mathbb{Z}_{5}$
By the zero divisor graph $\Gamma(R), \operatorname{gr}(\Gamma(R))=4$.

Example 4.3.

Let $R \cong \mathbb{Z}_{3} \times \mathbb{Z}_{5}$ where \mathbb{Z}_{3} and \mathbb{Z}_{5} are finite fields with $\left|\mathbb{Z}_{3}\right|,\left|\mathbb{Z}_{5}\right| \geq 3$.

Figure 4.3. Z_3×Z_5
If either $|\Gamma(R)| \leq 2,|\Gamma(R)|=3$ then, we can show that $\operatorname{gr}(\Gamma(R))=\infty$ and $\Gamma(R)$ is not complete.

Example 4.4.

Let $R \cong \mathbb{Z}_{9}=\{0,1,2,3,4,5,6,7,8\}$ and $\Gamma(R)$ is given below.

Figure 4.4. \mathbb{Z}_{9}
$|\Gamma(R)|=2$, hence $\operatorname{gr}(\Gamma(R))=\infty$.

Example 4.5.

Let $R \cong \mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ and $\Gamma(R)$ is given below.

Figure 4.5. \mathbb{Z}_{6}
$|\Gamma(R)|=3$, but not complete, hence $\operatorname{gr}(\Gamma(R))=\infty$.

Suppose that $R \cong \mathbb{Z}_{2} \times A$ with $|Z(R)|=2$ then $\operatorname{gr}(\Gamma(R))=\infty$. For each integer $n \geq 1$, let Γ_{n} be the graph with vertex set $\left\{x_{1}, \ldots . x_{n}\right\}$ and $x_{1}-x_{2}, x_{2}-x_{3}, \ldots . x_{n-1}-x_{n}$ as its only edges. By theorem 4.1, the "line graph" Γ_{n} can be realized as $\left|\Gamma\left(R_{n}\right)\right|$ if and only if $n \leq 3$.

Corollary 4.6. If R is a commutative ring then for $x, y \in Z(R)$, define $x \sim y$ if $\mathrm{xy}=0$ or $\mathrm{x}=\mathrm{y}$, and define $x \sim * y$ if $x y=0$.
(a) if $\Gamma(R)$ is complete then relation \sim is transitive which is an equivalence realtion.
(b) The relation $\sim *$ istransitive if and only if $\Gamma(R)$ is complete and $R \neq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

Proof. Both the parts directly follow from Theorem 2.1. and Theorem 4.1.

References

1. Anderson, D.D., \& Naseer, M. (1993). Beck' s coloring of a commutative ring. Journal of algebra, 159(2), 500-514.
2. Anderson, D.F. (2008). On the diameter and grith of a zero-divisor graph. II, Houston. J. Math., 34(2), 361-371.
3. Anderson, D.F., \& Livingston, P.S. (1999). The zero-divisor graph of a commutative ring. Journal of algebra, 217(2), 434-447.
4. Beck, I. (1988). Coloring of commutative rings. Journal of algebra, 116(1), 208-226.
5. Dolžan, D., \& Oblak, P. (2012). The zero-divisor graphs of rings and semirings. International Journal of Algebra and Computation, 22(04), 1250033.
6. DeMeyer, F R., McKenzie, T., \& Schneider, K. (2002). The zero-divisor graph of a commutative semigroup. In Semigroup Forum, 65(2), 206-214.
7. DeMeyer, F., \& DeMeyer, L. (2005). Zero divisor graphs of semigroups. Journal of Algebra, 283(1), 190-198.
8. Ganesan, N. (1964). Properties of rings with a finite number of zero divisors. Mathematische Annalen, 157(3), 215-218.
9. Bollaboas, B. (1979). Graph Theory, An introductory course, Springer-Verlag, New York.
10. Kaplansky, I. (1974). Commutative Rings, rev. ed., Univ. of Chicago press, Chicago, 1974.
11. Lucas, T.G. (2006). The diameter of a zero divisor graph. Journal of Algebra, 301(1), 174-193.
12. Anderson, D.F., \& Weber, D. (2018). The zero-divisor graph of a commutative ring without identity. International Electronic Journal of Algebra, 23(23), 176-202.
13. Weber, D. (2017). Various topics on graphical structures placed on commutative rings. PhD dissertation, The University of Tennessee.

[^0]: ${ }^{1}$ Assistant Professor, Rishi MS Institute of Engineering and Technology for Women, Hyderabad, India, seetavitala@gmail.com

