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Abstract 

In this research, a novel Parallel Fused Dense Convolutional Neural Network (PFDCNN) is proposed 

to extract and identify production features automatically from input salt informatics.  All input salt 

information is processed through small kernel based densely connected CNN path or phase I and 

large kernel based densely connected CNN path or phase II. The fused outcomes of these two phases 

are processed in a Fully Connected (FC) layer to perform one to one connections between input 

feature map and output class labels. Here, the softmax activation interprets a single vector input 

features into a number of salt class probabilities. The proposed output class labels are further 

compared with original class labels from salt dataset for performing an evaluation. Thus, this 

PFDCNN algorithm achieves 92% of Accuracy, 95% of Recall, 94% of F1-Score and 94% of 

Precision values, which is 7% of higher accuracy than the existing deep neural network and machine 

learning methods. 

Keywords: Salt production identification, convolutional neural network (CNN), parallel fused dense 

CNN, deep learning, artificial intelligence, etc. 

1. Introduction 

Salt is the natural crystalline mineral that primarily composed with sodium chloride (NaCl) 

compound. It is used in various manufacturing industrial processes such as paper pulp, plastics and 

polyvinyl chloride. This salt enhances food taste and brings natural flavour’s in foods. The 

consumption of excessive salt causes hypertension like cardiovascular diseases, chronic kidney 

disease, osteoporosis, and cancer. The highly used salt are available in twelve different forms 

namely, pickling salt, Himalayan block salt, smoked salt, black Hawaiian salt, red Hawaiian salt, 

flake salt, fleur de sel, Celtic grey sea salt, sea salt, Himalayan pink salt, kosher salt, and table salt. 

The salt product has been harvested through the evaporation of sea water or by salt mines. In sea salt, 

the sea water is filled with shallow evaporation ponds and then the water disappears by the process 

of evaporation leaves salt to be harvested. In underground salt, the salt miners cut or drill the rock 

from underground salt, and then crushed salt pieces are formed by breaking up the rock salt through 

machines.  
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An automatic identification of salt production plays a vital role to improve business profit of salt 

miners. In worldwide, there are five leading salt producers namely, Canada, India, China, Germany 

and the United States. Indian country is the tired largest producer of salt after china and United 

States. This research focuses an automated solution for salt production identification from salt panes 

available at thoothukudi district of Tamilnadu state in India. Initially, the dataset is collected based 

on the production information along with climate information categories like minimum temperature, 

maximum temperature, wind direction, wind speed, minimum pressure, maximum pressure, 

minimum humidity, maximum humidity, rainfall, total area, salt production for total area, salt 

production per a hundred acre and brain degree.  

There are various machine learning [19] and neural network algorithms [20] are best suited for this 

salt production classification [4]. In this research, a novel Parallel Fused Dense Convolutional Neural 

Network (PFDCNN) is proposed to extract and identify production features automatically from input 

salt informatics, which is higher accuracy than the existing outperformed CNN and MLP methods. 

This work categorizes four subsections:  The related works of salt production are detailed in Section 

2; the proposed PFDCNN method is elaborated in Section 4 and Section 5 derives their conclusion.  

2. Review of Related Studies 

The production identification from a salt dataset is very difficult because very limited similar 

research works are available. There are currently available machine learning algorithms like, Naïve 

Bayes classifier, Random Forest algorithm, decision trees, K-Nearest Neighbor, MRF (Markov 

Random Field), Regression tree based methods, Conditional Random Field (CRF), and Support 

Vector Machine (SVM) are best suited for this salt production classification [13] [14]. These 

methods expect programmer interaction for identification problems [9]. In recent years, the neural 

network is an appropriate and effective technique to recognize patterns in real-world classification 

problems [6].  

Sultan et al suggests ANN (Artificial Neural Network) method to extract incremental high-level 

features [1]. In this method, the raw data is directly classified without the intervention of specific 

input features in which machines act intelligent as humans to classify and recognize patterns into 

desired categories [21 [5] [16]. Recently, deep learning or deep neural networks algorithms are most 

suitable for pattern classification problems [7]. These algorithms avoid hand-crafted traditional 

feature extraction. Marian et al [15] and Sultan et al [17] develop Deep Learning method to learn 

automated features from input data. Yunzhi et al [12] developed an intelligent deep learning based 

CNN approach to identify salt bodies in seismic images and it captures salt features without the need 

of any feature extraction.  

Aleksander used deep learning approach to identify salt deposits on seismic images and also classify 

non-salt or salt bodies in seismic images [11]. Guntur et al [10] have been developed greenhouse 

method based salt production, which combines prism greenhouse, threaded filter and geomembrane 

technology. Hero et al [8] implemented the pristine production making process by adjusting sea 

water concentration. These existing methods are only used for identification of salt from seismic 

wave images and for improving salt production. But, the salt production identification from climate 

information is still challenging problem. This research work developed an automated PFDCNN 

algorithm for detecting salt production.   
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3. Proposed Methodology 

The proposed architecture concatenates two parallel dense CNN architectures to identify the salt 

production, which contains three following major phases: workstation and databases; the PFDCNN 

based salt production identification and performance evaluation.  

3.1. Workstation and Database 

The complete proposed PFDCNN method is implemented using python 3.8 working under i7-4500U 

GPU of Intel R-core, 16 GB Random Access Memory (RAM) and 4 GB NVIDIA GPU (Graphic 

Processor Unit). The salt dataset is collected from eleven salt pans in the thoothukudi district and it 

contains salt production details along with their climate information.  The dataset composed of eight 

class labels: zero ton production (class 1); 1-500 tons of salt production (class 2); 501-1000 tons of 

salt production (class 3); 1001-1500 tons of salt production (class 4); 1501-2000 tons of salt 

production (class 5); 2001-2500 tons of salt productions (class 6); 2501-3000 tons of productions 

(class 7); 3000-3500 tons of productions (class 8).  

3.2. The PFDCNN based Salt Production Identification 

The main goal of PFDCNN is to extract salt production features automatically from input salt 

informatics. Salt production information from the dataset is processed in two different parallel 

phases: small kernel based densely connected CNN path and large kernel based densely connected 

CNN path. The outcome of these two feature maps are fused together and processed in a Fully 

Connected (FC) layer. Here, the softmax activation is performed over the extracted salt features from 

FC layer outcome to predict output classes. The overall pictorial representation of PFDCNN is 

visualized in Figure. 1 and detailed methodology explained below subsections.  

 

Figure.1. The architecture of PFDCNN. 

  

3.2.1. Phase I – Dense CNN with Small Kernels 

The climate and salt production information from a dataset are first processed in phase I, which is 

small kernel based densely connected CNN path to extract input features. In this, an input data xi is 
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convolved with weight wi from small kernel size 3 and bias bi to form feature map y13 is given in 

Eqn. (1).  

                                                        𝑦13 = 𝑓 ( ∑  [𝑥𝑖 ∗  𝑤𝑖]
𝑛
𝒊=𝟏 + 𝑏𝑖  )               (1) 

Where, i=1,2,3… n. This feature map y13 is concatenated with input xi to yield concatenated outcome 

c13 is defined in Eqn. (2).  

                                                𝑐13 = 𝑦13 + 𝑥𝑖                                                                       (2) 

This concatenated outcome c13 is downsampled using maxpooling to produce p13. Further, one 

dimensional convolution has been performed over this downsampled data p13 to produce feature map 

y23 is given in Eqn. (3). 

              𝑦23 = 𝑓 ( ∑  [𝑝13𝑖 ∗  𝑤𝑖]
𝑛
𝒊=𝟏 + 𝑏𝑖 )                                                            (3) 

The feature map y23 is concatenated with previous max pooling outcome p13 to yield concatenated 

outcome c23 is mentioned in Eqn. (4).  

                                               𝑐23 = 𝑦23 + 𝑝13                                (4) 

This c23 is again downsampled to produce computationally less complexity outcome p23 and 

convolved using a kernel size equal to 3 to produce feature map y33 is defined in Eqn. (5). 

      𝑦33 = 𝑓 ( ∑  [𝑝23𝑖 ∗  𝑤𝑖]
𝑛
𝒊=𝟏 + 𝑏𝑖 )                  (5) 

The convolved feature map y33 is concatenated with previous max pooling outcome p23 to yield 

concatenated outcome c33 is mentioned in Eqn. (6).  

                               𝑐33 = 𝑦33 + 𝑝23                                                                         (6) 

This cascaded c33 is considered as phase I outcome.  

3.2.2. Phase II – Dense CNN with Large Kernels 

The input data from dataset is also parallelly processed in phase II or large kernel based densely 

connected CNN path for extracting salt features automatically. Here, an input data xi is convolved 

with weight wi having large kernel size 7 and bias bi to form feature map y17 is given in Eqn. (7).  

           𝑦17 = 𝑓 ( ∑  [𝑥𝑖 ∗  𝑤𝑖]
𝑛
𝒊=𝟏 + 𝑏𝑖  )                                               (7) 

Where, i=1,2,3… n. This feature map y17 is concatenated with input xi to yield concatenated outcome 

c17 is defined in Eqn. (8).  

           𝑐17 = 𝑦17 + 𝑥𝑖                                                                                   (8) 

This concatenated outcome c13 is downsampled using maxpooling to produce p17. Further, one 

dimensional convolution has been performed over this downsampled data p17 to produce feature map 

y27 is given in Eqn. (9).  
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                       𝑦27 = 𝑓 ( ∑  [𝑝17𝑖 ∗  𝑤𝑖]
𝑛
𝒊=𝟏 + 𝑏𝑖 )                                                            (9) 

The feature map y27 is concatenated with previous max pooling outcome p17 to yield concatenated 

outcome c27 is mentioned in Eqn. (10).  

                   𝑐27 = 𝑦27 + 𝑝17                                                                      (10) 

This c27 is again downsampled to produce less complexity outcome p27 and convolved using a large 

kernel size equal to 7 to produce feature map y37 is defined in Eqn. (11). 

                                𝑦37 = 𝑓 ( ∑  [𝑝27𝑖 ∗  𝑤𝑖]
𝑛
𝒊=𝟏 + 𝑏𝑖 )                                  (11) 

The convolved feature map y37 is concatenated with previous max pooling outcome p27 to yield 

concatenated outcome c37 is mentioned in Eqn. (12).  

                             𝑐37 = 𝑦37 + 𝑝27                                        (12) 

This cascaded c37 is considered as phase II outcome.  

3.2.3. Parallel Fusion 

The cascaded outcome c33 from phase I or small kernel based dense CNN and the cascaded outcome 

c37 from phase II or large kernel based dense CNN are fused together to produce final feature map 

ycas is defined in Eqn. (13).  

                     𝑦𝑐𝑎𝑠 = 𝑐33 + 𝑐37                                         (13) 

The final feature map ycas is further processed in fully connected dense layers for predicting class 

labels of salt production. 

3.2.4. Fully Connected Layer 

This layer converts final feature map into a single dimension and performs a one to one connections 

between input feature map and output class labels. The architecture of one to one connection from 

the FC layer is presented in Figure.2. The FC layer is used to convert the final feature map ycas into a 

single dimension for class prediction. The final parallel fused outcome ycas contains the dimension of 

3x386. This dimension is converted as 1x1158 in a fully connected layer. Here, the softmax 

activation [18] is performed to predict the salt class probabilities.   

 

Figure. 2. Fully-connected layer architecture 
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3.2.5. Softmax Function 

This function is mostly used in multi-class identification problems. It interprets a single vector input 

features into a number of salt class probabilities [3]. The predicted salt classes are compared with 

original salt classes from the dataset and their loss value is calculated by categorical cross entropy is 

given in Eqn. (14). 

                                            𝐿𝑜𝑠𝑠 = ∑  𝑝(𝑦𝑖)
𝑛
𝒊=𝟏 ∗  𝑡(𝑦𝑖 )                     (14) 

Where, i is the number of class labels, p(yi) is the predicted salt classes and t(yi) is the original 

targeted class labels. If the computed loss value is high means the same process is performed again 

and again until to get a desired optimal outcome. In every iterations, the network learnable weights 

are modified for getting high prediction performance.   

3.3. Performance Evaluation 

The performance of PFDCNN over eight class labels computed by Accuracy, Recall, F1-Score, and 

Precision are defined in Eqn. (15) - (18). 

Accuracy =  (#𝑇𝑃+#TN)/(#TP+#FP+#FN+#TN)      (15) 

Recall =  (#TP)/ (#TP+#FN)                                  (16) 

F1-Score= (#(2𝑇𝑃))/ (#(2TP)+#FP+#FN)                  (17) 

Precision= (#𝑇𝑃)/ (#TP+#FP)                      (18) 

where, # denotes the cardinality, #TP is the cardinality of correctly predicted positive salt class 

labels, #TN is the cardinality of correctly predicted negative salt class labels #FP is the cardinality of 

wrongly predicted positive salt class labels and #FN is the cardinality of wrongly predicted negative 

salt class labels. 

4. Experimental Results and Discussion 

4.1. Proposed PFDCNN Method Effectiveness 

All input data from salt dataset is processed parallelly through two different phases. The proposed 

PFDCNN network contains two different phases. The small kernel based dense CNN layers in phase 

I is used to learn detailed fine-grained features from an input and large kernel based dense CNN 

layers from phase II is used to learn spacious features. The outcome extracted features from phase I 

and phase II are fused together and processed in the FC layer. Here, the softmax activation is 

performed to predict layers the class labels of salt production. The layer-wise parameters used in 

PFDCNN layers are detailed in Table. 1. 

Table. 1. The layer-wise parameters in FCDCNN architecture. 

PFDCNN 

Name of  

Layer 

Size 

(Input

) 

Outpu

t 

(Size) 

Parameters 
Name of  

Layer 

Size 

(Input

) 

Outpu

t Size 
Parameters 
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Phase - I Phase - II 

Convolutio

n 

Layer-13 

12x1 
12x6

4 

1D Conv, 64 

filters, kernel 

size=3, Stride 

=1, ReLU [2] 

Convoluti

on 

Layer-I7 

12x1 12x64 

1D Conv, 64 

filters, kernel 

size=7, Stride =1, 

ReLU [22] 

Concatenat

e 

Layer-13 

12x64 
12x6

5 

Concatenate 

input with 

convolution 

layer-I3 

Concatena

te 

Layer-17 

12x64 12x65 

Concatenate input 

with convolution 

layer-I7 

Max 

Pooling  

Layer-13 

12x65 6x65 Pool size=2 

Max 

Pooling  

Layer-17 

12x65 6x65 Pool size=2 

Convolutio

n 

Layer-23 

6x65 6x64 

1D Conv, 64 

filters, kernel 

size=3, Stride 

=1, ReLU 

Convoluti

on 

Layer-27 

6x65 6x64 

1D Conv, 64 

filters, kernel 

size=7, Stride =1, 

ReLU 

Concatenat

e 

Layer-23 

6x64 
6x12

9 

Concatenate 

Max Pooling  

Layer-13 with 

convolution 

layer-23 

Concatena

te 

Layer-27 

6x64 6x129 

Concatenate Max 

Pooling  

Layer-17 with 

convolution layer-

27 

Max 

Pooling  

Layer-23 

6x129 
3x12

9 
Pool size=2 

Max 

Pooling  

Layer-27 

6x129 3x129 Pool size=2 

Convolutio

n 

Layer-33 

3x129 3x64 

1D Conv, 64 

filters, kernel 

size=3, Stride 

=1, ReLU 

Convoluti

on 

Layer-37 

3x129 3x64 

1D Conv, 64 

filters, kernel 

size=7, Stride =1, 

ReLU 

Concatenat

e 

Layer-33 

3x64 
3x19

3 

Concatenate 

Max Pooling  

Layer-23 with 

convolution 

layer-33 

Concatena

te 

Layer-37 

3x64 3x193 

Concatenate Max 

Pooling  

Layer-27 with 

convolution layer-

37 

Concatenate Layer-33 and Concatenate Layer-37 are fused together 

Name of Layer : Flatten, Size (Input) : 3x386, Size (Output) : 1x1158. 

Name of Layer : Fully connected, Size (Input) : 1x1158, Size (Output) : 1x8, Activation : Softmax, 

Number of classes: 8 

4.2. PFDCNN Performance 

The predicted salt classes of proposed method are compared with original salt classes from the 

dataset to perform an evaluation. Performance measures like Accuracy, Recall, F1-score and 

Precision values of the proposed algorithm are calculated and their results are depicted in Table.2.  
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Table 2. Performance of PFDCNN. 

Salt production data 

Method Name Accuracy Recall F1-Score Precision 

PFDCNN 92 95 94 94 

 

 

Figure.3. Performance chart of proposed Method. 

 

Figure. 4. Confusion matrix of proposed Method. 

 

Thus, this proposed PFDCNN algorithm achieves 92% of Accuracy, 95% of Recall, 94% of F1-

Score and 94% of Precision. Figure 3 shows the performance chart and Figure 4 shows the confusion 

matrix of the PFDCNN method. 
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4.3. Performance comparison of PFDCNN Architecture  

The performance of PFDCNN algorithm is compared with existing methods. The existing Naïve 

Baye's, K-Nearest Neighbor (KNN), CNN and MLP methods are applied over the salt dataset and 

their results are detailed in Table. 3. Naïve Baye’s is the supervised machine learning classification 

method based on Baye’s theorem, which achieves accuracy value is 62%, Recall value is 62%, F1-

Score value 55%, and Precision value is 64%. The KNN is one of the lazy learning algorithm, which 

learns data from training set very slowly. This method achieves accuracy value is 72%, Recall value 

is 72%, F1-Score value 70%, and Precision value is 76%. 

Table.3. The performance comparison of PFDCNN method with existing CNN and MLP. 

Salt production data 

S. No Method Name Accuracy Recall F1-Score Precision 

1 Naïve Bayes 62 62 55 64 

2 KNN 72 72 70 76 

3 MLP 83 85 83 87 

4 CNN 86 91 91 91 

5 Proposed Method 92 95 94 94 

 

To overwhelm KNN and Naïve Baye’s limitations, the MLP has been applied over input salt data to 

learn features very fast and automatic. This MLP method earns Accuracy value is 83%, Recall value 

is 85%, F1-Score value 83%, and Precision value is 87%. Further, the deep learning based CNN 

algorithm is processed over salt input to learn automatic features for improving performance. This 

method earns an Accuracy value is 86%, Recall value is 91%, F1-Score value 91%, and Precision 

value is 91%. The results of these four methods are compared with PFDCNN results. Thus proposed 

PFDCNN achieves Accuracy value is 92%, Recall value is 95%, F1-Score value 94%, and Precision 

value is 94%. Figure.5 shows the performance comparison of PFDCNN method with existing four 

methods. Thus, the proposed algorithm gained higher performance of 7% Accuracy, 4.3% Recall, 

3.2% F1-score, and 3.2% Precision than the existing method. 

 

Figure. 5. The figure is center-aligned and the caption of the figure is left-aligned. 
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5. Conclusion 

An automatic identification of salt production plays a vital role to improve business profit of salt 

miners. This research work developed an automated PFDCNN algorithm for detecting salt 

production. The predicted salt production labels from proposed algorithm are compared with original 

salt labels for performing evaluation. These evaluation results of PFDCNN algorithm are then 

compared with existing Naïve bayes, K-Nearest Neighbor (KNN), CNN and MLP methods. Thus, 

the proposed algorithm gained 7% higher in Accuracy, 4.3% higher in Recall, 3.2% higher in F1-

score, and 3.2% higher in Precision than the existing methods.  
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