
 

I.Sofiya1, Dr.D.Murugan2 

 

6425 

Turkish Online Journal of Qualitative Inquiry (TOJQI) 

Volume 12, Issue 8 July, 2021: 6425 – 6438 

 

Research Article 

 

Automatic detection of cell nuclei from H&E-stained based Marker-Controlled 

Segmented Histopathological Images 

 

I.Sofiya1, Dr.D.Murugan2 

1Research Scholar, 2Professor,  

Department of CSE, Manonmaniam Sundaranar University,  

Abishekapatti, Tirunelveli. 

*Corresponding Author: sofiya21193@gmail.com 

 

ABSTRACT  

A computer-aided diagnosis system is the most important step for implementing an automated 

cell nuclei segmentation using cancer cells. Breast cancer is one of the world's major public health 

issues affecting women. It has two states: benign and malignant. Benign states are slow to develop, 

rarely spread to other parts of the body, and have well-defined borders. Malignant state, on the other 

hand, has a tendency to grow faster and is life threatening. Histopathological Images (HIs) are the 

gold standard for evaluating certain types of tumors for cancer diagnosis. Image segmentation 

techniques aim to identify and extract foreground objects in an image, resulting in individual 

segments. Image segmentation is fundamentally different from one type of image to the next because 

each has its own context and different geometrical properties, posing a challenge in designing a 

generic algorithmic procedure. In this paper, an effort is made to compare and study the efficiency of 

colour image segmentation using Fuzzy C-Means Clustering, segmentation using K-Means 

Clustering, Watershed Segmentation using Gradient, and proposed H&E Stained based Marker-

Controlled towards tumor detection segmentation. The analysis concluded that the performance of 

Watershed Segmentation using Marker-Controlled produced better results than other techniques. 

Keywords: Segmentation, Fuzzy C-Means, K-Means, Watershed with Gradient & Proposed 

Watershed with H&E based Marker-Controlled. 

 

1. INTRODUCTION 

Cancer is one of the primary cause of human mortality in the world. The utmost common 

cancer type in women is breast cancer. Timely detection and diagnosis plays a key role to control 

deaths due to breast cancer and it leads to the successful treatment. Presently, the screening techniques 

used for diagnosis of breast cancer are: mammography, ultrasound, fine needle aspirate, and biopsy. 

Mammography hardly detects cancer in dense breasts in adolescent women. It has 70-90% stated rate 

of cancer detection that concludes that the missed rate of breast cancer with mammography is 10-30% 

[1]. Histopathological images obtained from biopsy may influence how and at which stage the cancer 

is being diagnosed. Histopathological images allow early detection of tumor but there are difficulties 

with manually analysing these images. The current developments in digital pathology has the 

potential to reduce the workload of histopathologists by overcoming the subjective interpretation [2]. 

Furthermore, image segmentation for cell analysis to be precise generally requires great work effort. It 

is due to the huge variabilities caused because of dissimilar microscopes, inhomogeneous intensities 

of cells, type of cells, and stains. The complex data of cells and images is a major cause for problems 

in cell analysis [3]. To overcome these factors, various segmentation techniques exist in the literature 
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[4, 5]. Image segmentation is a process that is used to detect objects or boundaries in an image, which 

is distinguished between foreground and background pixels according to many characteristics. Several 

techniques have been recognized in literature to segment cells from neighboring tissues in 

histopathological images. The efforts to simplify segmentation techniques anticipated in literature 

fails frequently because these techniques work appropriately only for particular images. 

Segmentation is a critical and settled exploration point in the field of image analysis and 

Computer vision. It is the most troublesome errand in image processing. Segmentation is the process 

of grouping the pixels that presents homogeneous characteristics, i.e. segmenting the image into 

various regions or objects. All consequent interpretation tasks, for instance, object recognition and 

classification depends vivaciously on the nature of the segmentation process. 

The techniques based on pixel used for nuclear segmentation are the modest ones [6]. They 

depend upon the pixel value information such as texture, gray level or color. This is done either by 

using pixel classification or by automatic multi-thresholding using image histogram. Various 

thresholding techniques are used in which one or more thresholds must be determined to extract 

important objects from images [7-9]. Such type of techniques do not yield stable results as they have 

huge variabilities within image sets and they incline to work only on high-contrast images [6, 10]. 

Wang et al. involved thresholding technique to detect mitosis in histopathological images of breast 

[11, 12]. The limitations of thresholding technique in [12] was that it was not implemented using 

multiple layers of CNN model. Kowal et al. employed adaptive thresholding technique to segment 

histopathological images of breast cancer that further helped in differentiating the different type of 

tumors such as malignant and benign [13]. Singh and Filipczuk employed Adaptive thresholding 

technique to segment and further classify breast cancer Hematoxylin and Eosin (H&E) images [14-

16]. Watershed algorithms and Active Contour Models (ACMs) are mostly used for segmentation of 

microscopic images [17, 18]. Qu et al. introduced an automatic computing system based on Marker 

Controlled Watershed that was used to extract all the morphological features in order to develop a 

classification model which could predict breast cancer [19].  

Active contours are used for medical image segmentation, edge detection and object tracking 

[20]. Ali et al. introduced an Active Contour Model (ACM) based on region segmentation where 

nucleus and glandular structures were segmented [21-23]. Zarella et al. reported a scheme to segment 

nuclei from other parts of the cell using Otsu thresholding [24]. In literature number of research work 

has been done using fuzzy set and neutrosophic set for image segmentation [25, 26]. Various 

hybridised models have been presented in literature [27-29]. Vahadane et al. reported a technique to 

overcome the issue of over-segmentation and enhanced performance of watershed using Otsu 

thresholding technique [27]. Mouelhi et al. developed a segmentation technique combining an 

enhanced watershed technique and a new model of fuzzy active contour for cell images of breast 

cancer [28]. Husham et al. discussed another hybridized technique based on level set and Otsu 

thresholding for nuclei detection and segmentation [29]. 

2.1 RELATED WORKS 

In the natural environment of the orchard, a segmentation method that works with varying 

illumination is yet to be demonstrated. The segmentation effect under the influence of alternating 

lighting and shadows remains to be verified. The segmentation process becomes easier when the 

difference between the fruit and the background is large. However, the interference of natural light 

and other factors in the orchard environment reduces this difference, and increases the difficulty in 

identification [30]. In this study, we propose a method to segment the apple image based on gray-

centered RGB color space. In gray-centered RGB color space, this paper presents a novel color 

feature selection method which accounts for the influence of halation and shadow in apple images. By 

exploring both color features and local variation contents in apple images, we propose an efficient 
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patch-based segmentation algorithm that is a generalization of the K-means clustering algorithm. 

Extensive experiments prove the effectiveness and superiority of the proposed method.  

 The k-means algorithm is an unsupervised ML method for clustering that has been used for 

the segmentation of pixel regions. In the context of this review, it represents the core of fourteen 

segmentation methods. Fatakdawala et al. [31] proposed a methodology based on the expectation-

maximization of the geodesic active contour for detecting lymphocyte nuclei, which can identify four 

structures: lymphocyte nuclei, stroma, cancer nuclei, and background. The process initiates with 

segmentation by a k-means algorithm, which clusters pixels of similar intensities, and afterward, such 

clusters are improved with an expectation-maximization algorithm. The contours are identified based 

on the magnetic interaction theory. After the definition of contours, an algorithm searches for 

contours’ concavity, meaning nuclei are overlapping. The experiments were conducted using a breast 

cancer dataset. A multiscale segmentation with k-means is the subject of study of Roullier et al. [32]. 

This work uses the same idea of the pathologist to analyze a whole slide image (WSI). The 

segmentation starts at a lower magnification factor and finishes at a higher magnification, where it is 

easier to identify mitotic cells. The result of the clustering algorithm aims to identify regions of 

interest in each magnification. Rahmadwati et al. [33] employed the k-means algorithm to help 

classify HIs. Although the focus is not on the k-means but Gabor filters, this clustering method is 

essential in the segmentation process. Peng et al. [34] used k-means and principal component analysis 

(PCA) to split HIs into four types of structures: glandular lumen, stroma, epithelial-cell cytoplasm, 

and cell nuclei. Subsequently, morphological operations of closing and filling are performed. He et al. 

[35] used a mixture of local region-scalable fitting and k-means to segment cervix HIs. Fatima et al. 

[36] used k-means for segmentation followed by skeletonization and shock graphs to identify nuclei in 

the previously segmented image. If the shock graph provides a confidence value smaller than 0.5 for 

nucleus identification, the second attempt of identification is made using a multilayer perceptron 

(MLP). This hybrid approach achieves 92.5% of accuracy in nucleus identification. Mazo et al. [37] 

also used k-means to segment cardiac images in three classes: connective tissues, light areas, and 

epithelial tissue. A flooding algorithm processes light areas to merge its result with epithelial regions 

and improve the final result. Finally, the plurality rule was used to assign cells into flat, cubic, and 

cylindrical. This method achieved a sensitivity of 85%.  

This work was extended in Mazo et al. [38]. Tosun et al. [39] proposed segmentation based 

on k-means that clusters all pixels into three categories (purple, pink, white), which are further divided 

into three subcategories. The object-level segmentation based on clustering achieved 94.89% of 

accuracy against 86.78% for pixel-level segmentation. Nativ et al. [40] presented a k-means clustering 

based on morphological features of lipid droplets previously segmented using active contours models. 

A decision tree (DT) was used to verify the rules that lead to the classes obtained by the clustering. 

The correlation with pathologist evaluations reached 97%. A two-step k-means is used by Shi et al. 

[41] to segment follicular lymphoma HI. The first step segments nuclei and other types of tissues into 

two clusters. The next step segments “another type tissue” area from the previous step into three 

classes (nuclei, cytoplasm, and extracellular spaces). The final step is a watershed algorithm to extract 

better contours of nuclei. The difference between manual segmentation and automated was around 

1%. Brieu et al. [42] presented a segmentation approach based on k-means. The result of k-means 

segmentation is improved and simplified using a sequence of thresholds that attempt to preserve the 

form of objects. The key point of such a method is not the segmentation but nucleus detection. Shi et 

al. [43] used k-means to cluster pixels represented in the CIELAB color space using pixel 

neighborhood statistics. A thresholding step improves contours detection of fat droplets, and human 

specialists analyze morphological information related to the droplets to come up with a diagnosis.  
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Shi et al. [41] proposed a segmentation method that considers the local correlation of each 

pixel. A first clustering performed by a k-means algorithm generates a poorly segmented cytoplasm, 

and a second clustering that does not consider the nuclei identified by the first clustering is performed. 

Finally, a watershed transform is applied to complete the segmentation. Other clustering algorithms 

have also been used to segment HIs. The work proposed by Liu et al. [44] used the iterative self-

organizing data analysis technique (ISODATA) to cluster cell images and create prototypes. Hafiane 

et al. [45] studied two strategies for initialization of clustering methods: geodesic active contours and 

multi-phase vector level sets. The last one proved to be more efficient when using spatial constraint 

fuzzy c-means, with accuracy values of 68.1% and 67.9% respectively, and k-means achieved 60.6% 

in this case. He et al. [46] presented segmentation based on Gaussian mixture models. Their 

methodology uses the stain color features (hematoxylin with blue color and eosin in pink and red) to 

apply two segmentation steps in the red channel and other channels subsequently. It does not present 

ground truth comparison, only visual results compared to k-means. [47] Presented a quasi-supervised 

approach based on nearest neighbors to cluster an unlabeled dataset based on itself and another 

labeled dataset. A comparison between the quasi-supervised approach and support vector machine 

(SVM) has shown that SVM presents a better performance, but it requires labeled data. Yang et al. 

[48] proposed a system for content recovery based on a three-step method that uses histogram 

features. The first two steps use dissimilarity measures of histograms to find candidate images. The 

last step uses mean shift clustering. The area under the curve (AUC) of the proposed method is 0.87, 

which is better than 0.84 achieved by the method based on local binary patterns (LBP) features. A 

mitotic cell detection system using a dictionary of cells is presented by Sirinukunwattana et al. [49]. A 

shrinkage/thresholding method groups intensity features represented by a sparse coding to create a 

dictionary. This method achieved 80.5% and 77.9% of F-score on Asperio and Hamatsu subsets of 

MITOS dataset, respectively. Huang [50] proposed a semi-supervised method based on exclusive 

component analysis (XCA) that uses the separation of stains to improve the performance. This method 

needs a small interaction of the user, who must provide a set of references from nuclei and from the 

cytoplasm. Finally, it is worth mentioning that unsupervised methods based on DL approaches have 

also been proposed for segmenting HIs. In this paper, we describe various pre-processing and 

segmentation methods which have been used in image analysis.  

3. METHODOLOGY 

The method begins with a colour deconvolution algorithm that divides the H&E-stained 

histopathology image into H&E channels. The hematoxylin channel is then subjected to 

morphological operations and thresholding techniques in order to determine the markers for use in 

nuclei segmentation with fuzzy c-means clustering, k-means clustering, watershed with gradients, and 

the proposed H&E-based marker-controlled watershed transform algorithm. Finally, the segmentation 

results are refined using the proposed H&E-based marker controlled watershed approach by 

minimising an objective function that estimates the  number of overlapping nuclei in the segmented 

regions. 

3.1 Dataset Description 

The image dataset is made up of high-resolution (2040 1536 pixels), uncompressed, and 

annotated H&E stain images from the Bioimaging 2015 breast histology classification challenge [53]. 

All of the images are digitised under the same conditions, with a magnification of 200 and a pixel size 

of 0.42m 0.42m. Each image is labelled with one of four classes: I normal tissue, ii) benign lesion, iii) 

malignant in situ carcinoma, and iv) malignant invasive carcinoma The labelling was done by two 

pathologists who only provided a diagnostic based on the image contents without specifying the area 

of interest for the classification. Cases of disagreement between specialists were discarded. The 

challenge's goal is to provide an automatic classification of each input image. 
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The hematoxylin and eosin staining causes the nuclei and cytoplasm to appear purple and 

pinkish, respectively. The dataset is made up of an extended training set of 249 images and a separate 

test set of 20 images. The four classes in these datasets are balanced. The images were chosen so that 

the pathology classification could be determined objectively based on the image contents.              

                       
                   A                          B                           C                           D 

Fig 1. Examples of microscopy image patches from the used dataset [53]. A normal 

tissue; B benign abnormality; C malignant in situ carcinoma; D malignant invasive carcinoma. 

3.2Pre-processing 

Image quality variations can have a significant impact on image segmentation. These 

variations are caused by a variety of factors, including inconsistent conditions during tissue slice 

preparation or image acquisition. Appropriate pre-processing methods, such as colour normalisation 

to minimise staining variations, spatial filtering to highlight major image structure, denoising to 

reduce image noise, and enhancement to optimise contrast between objects of interest and 

background, could all help to reduce variations to some extent. 

3.3 Segmentation 

Image segmentation is an important aspect of image processing. It becomes more important when 

dealing with medical images where pre- and post-surgery decisions are required for the purpose of 

initiating and hastening the recovery process. The need for maximum accuracy drives computer-aided 

detection of abnormal tissue growth. Manual segmentation of these abnormal tissues cannot be 

compared to today's high-speed computing machines, which allow us to visually observe the volume 

and location of unwanted tissues. 

3.3.1 Segmentation Using Fuzzy C-Means Clustering 

The fuzzy c-mean algorithm is a popular image segmentation algorithm that divides the image 

space into various cluster regions with similar pixel values. It's commonly used in image 

segmentation and pattern recognition. Fuzzy clustering is the best clustering method for medical 

image segmentation. The Fuzzy c-means (FCM) algorithm can be thought of as a fuzzy version of the 

k-means algorithm. It is a clustering algorithm that allows data items to have varying degrees of 

belonging to each cluster based on membership [54]. The algorithm is an iterative clustering method 

that finds the best c partition by minimising the weighted within group sum of squared error objective 

function. 

3.3.2 Segmentation Using K-Means Clustering 

K Means is a clustering algorithm. Clustering algorithms are unsupervised algorithms which 

mean that there is no labelled data available. It is used to identify different classes or clusters in the 

given data based on how similar the data is. Data points in the same group are more similar to other 

data points in that same group than those in other groups. K-means clustering is one of the most 

commonly used clustering algorithms. Here, k represents the number of clusters. 

3.3.3 Watershed Segmentation Using Gradients 

The preprocessing of a gray-scale image before using the Watershed transformation for 

segmentation can be done with the help of gradient magnitude. Dilation and erosion can be used in 

combination with image subtraction to obtain the Morphological Gradient image with the smoothened 
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image. The regions in an image are thickened and shrunk by dilation and erosion. Watershed 

Segmentation based on Morphological Gradient are introduced in Watershed Segmentation through 

opening and closing by reconstruction. Then reconstruction operators are in use to restructure gradient 

image in which a set of gradient pixels with high value are conserved and few gradient pixels with 

low value are detached. Thus improved algorithm using Gradients is applied to reconstruct image 

which eliminates over- segmentation but not completely. Although it holds the position of region 

contours clearly [51].  

3.3.4 Proposed Watershed Segmentation Using H&E Stained Based Marker-Controlled 

When Watershed Segmentation is applied directly to Gradient Magnitude images, it reveals 

the problem of over segmentation. The image to be segmented is converted to Grayscale in Marker-

Controlled Watershed Segmentation. The image is then reconstructed by opening and closing it with a 

selection of markers based on foreground and background objects to determine the definite 

boundaries. It is dependable, efficient, and robust, and it produces results with low noise. It also works 

well with composite images. The main step in the proposed H&E Stained based marker-controlled 

method is to properly identify the markers, which include internal and external markers. The internal 

markers represent the cell nuclei that we are looking for, while the external markers represent the 

background regions that surround all of the cell nuclei. The external markers should be a connected 

component in the image. The steps to be followed includes 

Step 1: Acquire Image 

Step 2: Segment the H&E Image by Colour. 

Step 3: Convert the colour image to gray colour.  

Step 4: Pre-processing Image. 

Step 5: Use the Gradient Magnitude as the Segmentation Function. 

Step 6: Calculate foreground markers. These are the points that connect the pixels within each 

object. 

Step 7: Calculate background markers. These are the pixels that do not belong to any object.  

Step 8: Change the segmentation of function to have only edge values at the foreground and 

background markers  

Step 9: Watershed transform of gradient image results in over segmentation 

Step 10: Read the watershed transformed gradient image and applying Closing and Opening 

function by Reconstruction. 

Step 12: Regional Maxima of gradient magnitude. 

Step 13: Compute the Watershed Transform using Segmentation Function. 

Step 14: Segment the Nuclei. 

Step 15: Visualize the Result. 

Once the markers have been determined, the watershed transform can locate the peaks or 

watersheds between the internal and external markers using the magnitude gradient hematoxylin 

image. To smooth the boundary, the morphological opening operation is used, which consists of 

morphological erosion followed by a dilation operation. For the morphological opening, a disk-shaped 

structuring element with radius 3 is used, which smoothes the boundary while also removing small 

protrusions. The distance transform algorithm is first applied to the smoothed binary image to identify 

the internal markers referring to cell nuclei. When the watershed transform technique is used on the 

modified gradient hematoxylin image, the over segmentation problem is reduced. A H&E-stained 

image labelled with markers (internal and external markers) and the segmentation result from the 

marker-controlled watershed transform algorithm. 

4. EXPERMENTAL RESULTS 
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The implemented methods are experimented on histopathaology images which are 

downloaded from various sources of online. The evaluation of experimental results is carried out 

through subjective studies. The results of the methods nuclei detection are shown in the figure 1 to 

figure 4 and the analysis of the performance metrics shown in table 1 to 4. 

  

4.1 Segmentation using Fuzzy C-Means Clustering 

     

                                   a) Normal                                              b) Benign 

     

         c) Malignant In Situ Carcinoma                  d) Malignant Invasive Carcinoma                                                

Fig. 1: Segmentation Using Fuzzy C-Means Clustering. 

Table 1. Performance Metrics of the BreakHis dataset Using Fuzzy C-Means Clustering 

 Accuracy Sensitivity Specificity PPV NPV F-Measure 

Normal 95.01 98.65 71.43 94.29 97.68 83.34 

Benign 93.56 97.89 75.57 97.36 98.25 86.04 

Malignant In Situ 75.58 99.35 36.10 71.67 99.13 53.05 

Malignant Invasive 92.68 98.58 88.79 93.45 98.57 94.06 

 

4.2 Segmentation using K-Means Clustering 
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                                   a) Normal                                              b) Benign 

         

            c) Malignant In Situ Carcinoma                  d) Malignant Invasive Carcinoma                                                

Fig. 2: Segmentation Using K-Means Clustering. 

Table 2. Performance Metrics of the BreakHis dataset Using K-Means Clustering 

 Accuracy Sensitivity Specificity PPV NPV F-Measure 

Normal 93.01 96.35 71.43 94.29 95.02 83.34 

Benign 92.73 97.55 85.69 83.81 76.90 98.76 

Malignant In Situ 76.39 99.20 36.88 72.61 91.65 53.89 

Malignant Invasive 91.68 93.45 86.69 90.58 88.79 96.61 

4.3 Watershed Segmentation using Gradients 
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                                   a) Normal                                              b) Benign 

         

              c) Malignant In Situ Carcinoma                  d) Malignant Invasive Carcinoma                                                

Fig. 3: Segmentation Using Watershed with Gradients. 

Table 3. Performance Metrics of the BreakHis dataset Using Watershed with Gradients 

 Accuracy Sensitivity Specificity PPV NPV F-Measure 

Normal 94.86 98.25 72.53 95.29 98.11 84.64 

Benign 95.68 96.25 94.56 99.30 80.30 89.26 

Malignant In Situ 80.39 97.52 69.12 85.35 99.01 65.86 

Malignant Invasive 95.36 91.55 96.25 98.54 89.46 90.25 

4.4 Proposed Watershed Segmentation Using H&E Stained Based Marker-Controlled 
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a) Normal                                              b) Benign 

         

               c) Malignant In Situ Carcinoma              d) Malignant Invasive Carcinoma                                                

Fig. 4: Proposed Segmentation Using H&E based Watershed. 

Table 4. Performance Metrics of the BreakHis dataset Using Proposed Segmentation Using 

H&E based Watershed 

 Accuracy Sensitivity Specficity PPV NPV F-Measure 

Normal 98.58 98.27 85.21 96.58 98.25 86.37 

Benign 97.68 96.79 98.44 99.38 80.95 89.26 

Malignant In Situ 89.39 99.69 69.12 85.35 99.08 65.86 

Malignant Invasive 98.36 91.55 97.25 93.64 89.46 90.25 

5. CONLCUSION 
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Image segmentation is the first step in the image processing and analysis process. Image 

segmentation divides the image into multiple parts, resulting in a significant difference between the 

image of the object and the background. In this paper, an effective and automatic computer-aided 

technique for pre-processing and segmentation is proposed and used. It describes an unsupervised 

method for segmenting nuclei in breast cancer biopsy images. The method is automatic and 

computationally efficient, requiring only a few parameters to be defined. An examination of a set of 

images with a variety of tissue appearances revealed that a large number of nuclei are segmented with 

high accuracy. Our experimental results show that the proposed watershed using H&E-based marker-

controller nuclei extraction approach can achieve good segmentation results and achieve better 

performance in terms of segmentation accuracy and nuclei separation when compared to other nuclei 

extraction algorithms. The analysis concluded that the performance of the proposed watershed 

segmentation using H&E-based Marker Controlled yielded better results than other techniques. 
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