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Abstract: 

We have explored the interaction of Alizarin red dye (Sodium salt of 1,2-dihydroxy-9,10-anthraquinone-

3-sulfonic acid) with two ionic micelles, Sodiun dodecyl sulphate (SDS) and Cetyl trimethyl ammonium 

bromide (CTAB) using steady state and three dimensional (3D) fluorescence spectroscopy. Change in the 

absorption spectral profile of Alizarin red with the two different charged surfactants were measured and is 

due to the encapsulation of Alizarin red within the micellar microenvironment. Emission intensity is 

decreased and the wavelength is red shift at higher concentration in presence of SDS anionic micelles. In 

contrast, the wavelength is blue-shifted in presence of cationic micelle, CTAB indicating the strong 

interaction between Alizarin red and CTAB. The binding parameters (binding constant and binding sites) 

are determined from fluorescence emission intensity values using steady-state experiments. Binding of 

Alizarin red dye with both the ionic micelles occurred via, hydrophobic and electrostatic interaction.  

Index Terms— Alizarin red, SDS, CTAB micelle, 3D fluorescence techniques 

 

1.INTRODUCTION  

Numerous researchers have been interested in the interactions of dyes with surfactants and 

micelles. Micelles have recently attracted the attention of analytical chemists due to their increased 

selectivity and sensitivity, increased solubility of organic compounds in water, ability to catalyze 

reactions, and most importantly, the fact that their microenvironment changes in the presence of any 

probe. Micellars olubilization of hydrophobic substances is very useful in practise. When a surfactant is 

introduced at sub-micellar concentrations to an Alizarin red dye solution, both the surfactant monomer 

and the dye aggregates may interact, via electrostatic and/or hydrophobic interactions may occur [1]. We 

have focused on both the extent and the locations of solubilization. Spectral analysis can identify micellar 

binding sites and quantify local polarity surrounding the probe. Alizarin Red dye is a well-known 

biological staining agent and ESIPT probe. Surfactants are utilised in different dyeing processes, thus 

studying their interactions is important for industrial purposes [2]. Because of their complexity, 

understanding the nature and mechanism of dye-surfactant interactions is important and has been focus of 
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much research [3-6]. Studies have shown that chemical structure plays a major role in the interactions of 

dyes and surfactants [7-10]. Micellar systems can solubilize poorly soluble drugs, increasing their 

bioavailability, and therefore,  used as drug carriers by encapsulation of the drugs, in order to ensure the 

transport to specific sites of action, to minimize drug degradation and loss, to prevent harmful side effects, 

thus improving the treatment efficacy [11]. The extent of interaction between the drugs and the 

surfactants can be best described by the hydrophobic effect and the electrostatic effect (primarily 

determined by the charge associated with the drug molecule as well as the surfactant molecules) [12,13]. 

Nowadays, the researchers are investigating new methods to develop efficient and cost effective 

technologies to remove environmentally harmful dyes from industrial effluents. In this regard, 

micellization is one of the methods to trap the hydrophobic dyes from the effluents [17].These changes 

have been earlier observed effectively by a number of techniques such as conductometry, fluorescence 

spectroscopy, spectrophotometry, potentiometry and voltammetry [18-22], where dye-surfactant 

interactions were found to be influenced by the charge, alkyl chain length of surfactants and the location 

of the substituents on the aromatic ring of the dye molecules. Photoinduced electron transfer operation in 

surfactant solutions is conceivably important for efficient energy conversion and storage since surfactant 

micelles assist to attain the separation of the photoproducts by hydrophilic-hydrophobic interactions of 

the products with the micellar interface [23-26]. Thus, the main goal of the present investigation is to 

study the influence of micelle environment on the Alizarin red dye molecules. Herein, we report the 

interaction of Alizarin red dye with two different micelles, SDS (Sodium dodecyl sulphate) and CTAB 

(Cetyl trimethyl ammonium bromide) using 3D fluorescence spectroscopy. 

 

2 EXPERIMENTAL 

 

 2.1 MATERIALS AND METHODS  

Alizarin red, SDS and CTAB were purchased from Sigma Aldrich chemicals were freshly 

prepared for each measurement. The absorption spectral measurements were carried out using Perkin 

Elmer Lambda spectrophotometer. The emission measurements were done with FP8500 JASCO 

spectrofluorometer Fluorescence emission spectra were recorded in the wavelength  range 500-650nm by 

exciting probe at 517nm using a slit width of 5nm.The interaction of Alizarin Red with micelles was 

studied by means of fluorimetric titration. The titration was carried out in triple distilled water, by adding 

aliquots of surfactant (2.4x10-3M) stock solution to a fixed amount of alizarin red (1.5x10-5M ) taken to 

obtain the molar ratio in the range 1to15. 
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Chart 1. Molecular Structure of (a) Alizarin Red dye and surfactants (b) SDS and (c) CTAB 

3     RESULTS AND DISCUSSION 

The molecular structure of Alizarin red dye and the surfactants used in present study is given in 

Chart 1. Interaction studies between the dye and the charged surfactants in premicellar and post micellar 

conditions are carried out with the aid of absorption and 2D & 3D fluorescence spectroscopy. The binding 

sites and binding constants are determined from the emission intensity measurements. 

3.1 Absorption Spectral features 

The absorption spectrum of Alizarin Red in aqueous medium is given in Fig 1. The lowest 

electronically excited state of an unsubstituted anthraquinone lies in the UV- region, due to the n→π* 

character. Insteadπ→π*transition state becomes the lowest excited state when an anthraquinone is 

substituted with an OH group. The present probe molecule has two OH groups as substituents, which are 

having electron donating character, and the presence of sulfonate group makes the molecule hydrophilic 

(Chart 1(a)). The absorption spectrum of Alizarin Red dye showed maxima at 260, 333, 517 nm.The peak 

at 260nm corresponds to the n → π* transition and the peak at 517nm, is assigned to →π*, i.e., 

intramolecular charge transfer band from the substituent to the aromatic π system. 



 

3D Fluorescence Spectroscopic investigation on the interaction of Alizarin Red dye with Ionic Micelles 

13798 

 
Fig. 1. Absorption spectrum of Alizarin Red dye in aqueous media. 

 

Fig. 2. Absorption spectrum of Alizarin Red dye in various concentration of CTAB. 

UV-Visible absorption measurements were carried out to study the electronic interactions of 

Alizarin red with the micelle (CTAB,). The change in absorption spectrum of Alizarin Red with different 

concentration of CTAB is shown in Fig 2. The absorption maximum of Alizarin red in presence of CTAB 

at 517 nm is shifted towards the longer wavelength region (555 nm). It could be conception that 

aggregation of the cationic CTAB micelles with the anionic dyes defeats their mutual repulsion forces and 

thus favours the dye polymerization [7]. This red shift indicates that the alizarin red molecule is located in 

the polar periphery of the head group than in the bulk water environment.  

Variation in the absorption maximum, λmax at 0.01mM Alizarin red dye as a function of CTAB 

and SDS concentrations is presented in Fig.3. In the pre-micellar concentration of the surfactant, the 

CTAB molecules agglomerate in presence of SO3- anions of Alizarin red, generating an aggregate with 

pollutant removing properties. Consequently, in the pre-micellar condition, the electronic spectra could 

not be registered. Whereas in the post micellar concentration, bathochromic shift from 517 nm to 555 nm 
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was observed. This red shift can be attributed to the incorporation of the Alizarin red dye in the polar 

region of the CTAB micelles. 

 

Fig. 3. Variation of the absorption maxima of Alizarin red with different concentration of 

(a) CTAB and (b) SDS 

The experiments are repeated with the anionic micelle SDS. The absorption spectrum of Alizarin 

red dye with different concentration of SDS is shown in fig 4. There is no appreciable shift in the 

absorption maxima at 517nm and there is a slight increase in the absorbance, indicating the formation of a 

stable system. The results revealed that both the dye and the surfactants are anionic and the dye shuttles 

between the micelle and the bulk phase.  

 

3.2. Determination of partition coefficient  

Partition coefficient, Kx is a dominant parameter to determine the partition of dye between the 

micellar and the bulk water phases. Partition coefficient Kx can be calculated from the following equation 

[28]. 

1

∆𝐴
=  

1

∆𝐴∞
+

1

𝐾𝐶∆𝐴∞(𝐶𝐷𝑦𝑒 + 𝐶𝑆𝑓 − 𝐶𝑀𝐶)
 

𝐾𝐶 =
𝐶𝐷𝑦𝑒

𝑚

𝐶𝐷𝑦𝑒
𝑚 (𝐶𝐷𝑦𝑒

𝑚 + 𝐶𝑆𝑓
𝑚)

 

𝐾𝑋 =
𝑋𝐷𝑦𝑒

𝑚

𝑋𝐷𝑦𝑒
𝑤  

where Xm
Dye  and Xw

Dye  are the mole fraction of dye in micellar and aqueous phases. 

Kc and Kx were obtained from the intercept and slope of the plot 1/∆A versus 1/(CDye+CSf-CMC). 

Using the absorbance intensity of the micelle-bound dye (in fig.5 and 6), partition coefficient Kx of 

Alizarin red with CTAB micelle was obtained as 34.91 and the value of Kc , partition constant is 0.2M-1. 

Similarly in SDS micellar environment, Kx of Alizarin red is 149.89 and Kc is 0.2041M-1. The calculated 

values of Kx and Kc are comparable with the reported literature values [28]. 
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Fig. 5 . Plot of 1/∆A versus 1/(CDye+CSf-CMC) for the interaction of Alizarin red with CTAB 

 

Fig.6. Plot of 1/∆A versus 1/(CDye+CSf-CMC) for the interaction of Alizarin red with SDS 

3.3. FLUORESCENCE SPECTRAL FEATURES  
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Emission spectrum of Alizarin Red in aqueous medium is given in Fig 7. On excitation at 515nm 

it showed two peaks at 585 and 623 nm. One belongs to the normal (N*) form and the other belongs to 

phototautomer (T) (Scheme 1), both forms highly emissive states and their spectral bands are well 

separated on the wavelength scale. In the excited state, proton transfer from OH group (1- position) to the 

carbonyl oxygen due to π→π* charge transfer with great change in the molecular geometry will occur. So 

the OH group is more acidic and the carbonyl oxygen is more basic in the excited state than in ground 

state. This π→π* band is assigned to the intramolecular charge transfer band from the substituent to 

aromatic system. 

 

Fig.7. Emission spectrum of Alizarin Red dye in aqueous media (Excited at 517 nm). 
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 Scheme1. Normal and phototautomer structures of Alizarin Red dye. 
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Fig. 8.   Emission spectrum of Alizarin Red dye in different concentration of SDS (0, 2x10-3, 2.5x10-3, 

3x10-3, 3.5x10-3, 4x10-3, 5x10-3, 7x10-3, 1x10-2, 1x10-4, 2x10-4, 5x10-4, 7x10-4, 9x10-4, 1x10-3M) 

 

Fig.9. Emission spectrum of Alizarin Red dye in different concentration of CTAB(0, 2x10-3, 2.5x10-3, 

3x10-3, 3.5x10-3, 4x10-3, 5x10-3, 7x10-3, 1x10-2, 1x10-4, 2x10-4, 5x10-4, 7x10-4, 9x10-4, 1x10-3M) 

Emission spectrum of Alizarin Red dye in different concentration of SDS is shown in Fig 8. The 

magnitude of fluorescence intensity decreased on increasing the concentration of SDS. This decrease in 

fluorescence intensity exposes the fluorescence quenching of any photophysical process. The fluorescence 

intensity gradually decreases up to the concentration (7x10-3M) and further increase in the concentration 

leads to the fluorescence intensity increase. The change in emission intensity and red shift are due to the 
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predominant hydrophobic interaction of SDS with alizarin red dye molecule prefers to the cluster 

association with the polar region of SDS head group, resulting in red shift spectrum [16]. Emission 

spectrum of Alizarin Red dye in different concentration of CTAB is shown in Fig 9. Upon incremental 

addition of CTAB surfactants, the intensity gets decreased with a shift towards the lower wavelength 

region (blue shift). This is due to the hydrophobicity of the media for the presence of aromatic groups of 

dye and probe molecules were attracted towards from polar aqueous phase to the relatively non polar 

surface of micelles due to the electrostatic force of attraction.  

 

3. DETERMINATION OF BINDING PARAMETERS  

When small molecules bind independently to a set of equivalent sites on the macromolecules, belong to 

equation is used to describe the relationship between fluorescence intensity and the concentration of the 

quencher. 

log
𝐹0 − 𝐹

𝐹
= logKA + nlog[Surf] 

Plot of log (F0-F)/F vs log [Q] gives a straight line and the binding constant is 1.887M-1 and number of 

binding sites, n is 0.9428 (~1). From the results, it was observed that there is a strong binding interaction 

between Alizarin red and anionic micelles (SDS), though the dye/surfactant system is anionic, binding 

via., hydrophobic interaction. The value of ‘n’ is ~ 1 pointed out the existence of single binding site in 

anionic micelle for Alizarin red dye. In contrast, the binding constant is 0.1587M-1, number of binding 

sites n is ~1( 0.7428) in the cationic micellar environment. 

 

 

Fig.10. Binding plot for the interaction of Alizarin Red with SDS. 
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Fig.11. Binding plot for the interaction of Alizarin Red with CTAB. 

4.  3D FLUORESCENCE SPECTRAL ANALYSIS 

 Three-dimensional fluorescence spectra have become a prominent fluorescence analysis 

technique in recent years [14]. The excitation wavelength, the emission wavelength and the fluorescence 

intensity can be used as the axes in order to investigate the information of the samples, and the contour 

spectra can also provide information about the location of the dyes present in the microenvironment [15]. 

It is well known that three-dimensional fluorescence spectrum can provide more detailed information 

about the change of the configuration of the biomolecules and also been used for qualitative analysis.  

Three dimensional spectra of Alizarin red in water is shown in Fig. 12. Two characteristics 

excitation/emission peaks for Alizarin red in water are identified on the fluorescence 3D spectrum with 

centers located at λex/λem = 500/610nm and λex/λem= 515/680nm. Peak 1 and peak 2 corresponds to the 

spectral characteristic of Alizarin red in normal form and photo tautomer form when it is excited at 500 

nm. 

 

Fig.12. Three dimensional contour and emission spectra of Alizarin red in water. 
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4.2. ANALYSIS OF ALIZARIN RED IN CTAB 

 Figure 13 and 14 presents the contour and three dimensional spectra of Alizarin red in various 

concentrations of CTAB is shown below. Peak 1 λex/λem= 430/585nm and peak 2 λex/λem= 430/685nm are 

the two fluorescence peak. Peak A λex/λem= 550/550 → 600/600 is the Raleigh scattering peak. Upon, 

we increasing the concentration of CTAB, the two fluorescence peaks of Alizarin red (Peak 1 λex/λem= 

500/550nm   and Peak 2 λex/λem= 500/650) shift towards in the higher energy region (hypsochromic shift) 

was seen in fig 15. So due to the blue shift or hypsochromic shift, the probe molecule is located on the 

hydrophobic region of the micelle. Due to hydrophobicity of the media, probe molecule (Alizarin red dye) 

molecules were move from polar region to the nonpolar surface of cationic micelles(CTAB). 

 

Fig.13. Contour and three dimensional emission spectra of Alizarin red in CTAB (2x10-3M) 

 

Fig.14. Contour and three dimensional emission spectra of Alizarin red in CTAB (1x10-2M) 

4.3. ANALYSIS OF ALIZARIN RED IN SDS 

 Figure 15 and 16 presents the contour and three dimensional spectra of Alizarin red in various 

concentrations of SDS is displayed below. Peak 1 λex/λem= 500/620nm and peak 2 λex/λem= 500/680 nm 

represents the two fluorescence peak. Peak A λex/λem= 545/545 → 600/600nm is the Raleigh scattering 

peak. The fluorescence intensity of the peak 2 increases markedly (1x10-2M) and the maximum emission 

wavelengths of the two peaks have obvious red shift following the addition of SDS indicating that the 

probe molecule is localized in the hydrophilic region of the anionic micelles (SDS). 
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Fig.15. Contour and three dimensional emission spectra of Alizarin red in  SDS (2x10-3M) 

 

 

Fig.16. Contour and three dimensional emission spectra of Alizarin red in  SDS (1x10-2M) 

5. CONCLUSION  

In conclusion, the results reported the detailed information about the photophysical properties of 

spectroscopic probe like Alizarin Red, a molecule showing the ESIPT process in micelles (SDS and 

CTAB). In cationic (CTAB) micellar media, the decreased in the fluorescence intensity and the 

hypsochromic shift along with the contour map dictate the formation of Alizarin red dye-CTAB complex 

association with the hydrophobic tail region of the micelles. In anionic (SDS) micellar media, the 

decreased in the fluorescence intensity and the bathochromic shift in the contour map and three 

dimensional emission spectra shows that the probe molecule is localized on the polar hydrophilic region 

of the anionic micelles. The interaction of Dye with anionic micelle is stronger than the cationic micelle, 

because of higher electrostatic interaction between Alizarin red dye with SDS. In agreement, with 

emission intensity changes, the value of binding constant were found out and the number of binding site 

is ~ 1 indicate the existence of single binding site in micelles. 
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