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Abstract:

The generalised recurrent spaces have been discussed in this paper. As holomorphic sectional
curvature of a Kaehlerian space plays an important role in its geometry, the notion of generalised
recurrent spaces has not been considered identically the same as in Riemannian geometry but has been
modified in a sense to involve the above mention holomorphic sectional curvature. In different articles
of this paper we have studied Ricci-recurrent, generalised Ricci-recurrent and generalised Ricci-2-
recurrent Kaehlerian spaces.
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1. Introduction:

The idea of recurrent Kaehler space has been introduced by Mathai[7] in an analogy
with the concept of recurrent Riemannian space([10],[16]) in 1969. With the help of well-known
holomorphically projective curvature tensor[15], Bochner curvature tensor[14], and H-conharmonic
curvature tensor[12] the idea of recurrency has been defined and studied by many investigators like
Singh and Lal[13], Prasad[9] etc.

Recently in 1991, U. C. De and others introduced the idea of a Generalised recurrent
Riemannian space[1]. In this paper we have extended this concept to a Kahlerian space. The nature
and existence of K-torse-forming vector fields[20] in such spaces have also been discussed.

Let Kn(n=2m>2) be an n-dimensional Kaehlerian space with F"=0 and g; as the components
of the structure tensor and Hermitian metric tensor respectively, then the Riemannian curvature
tensor, Ricci tensor and its transformation by the structure tensor satisfies

(1.1) Fi=0

(1.2)  V;Ryji'= ViR — ViRy

(13) V,R('=IVR

(14) Ryi"Fi'=0

Further holomorphically projective curvature tensor or briefly HP-curvature tensor Py;"

which is an invariant under any holomorphically correspondence([6],[13]) and is given byPy;i" = Ry

+ nl? [6;"Rii— 0k"Rji + Fi"Swi- Fi"S;i + 2Fi"Sy(]

and satisfies the following identities
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(15) (@ Pyi'F" = Py "F
(b) Pyi"Fi" = Py "Fy'
1.6) (a PyjirFn' = —PyjenF'
(b) PrjinF" = Priin A’
17 @ Pyjing" =0,
(b) Pyjing* = -Ajn
(c) Pyjind" = Aun,
(d) PyjinF* = Fa"An
(e) PyjinF" = F™Amn,
4] PyjinF" =0
where

1
Axh = 5 [NRih — Rgn]

Further, Bochner curvature tensor given by

Biji" = Rii" + 8k"Lji — §"Lii + gjilk" — g™+ MjiF" — MR + FiMi" — FigM;" - 2 (MFiM+ FigmiP
h Lji = - — Rji + ————— Ry
where = T S ey i
and Mji = -thl:it

andH-conhormonic curvature tensor given by

Cujih = Rujin + ﬁ [ginRki - gknRji + Rjngki - RinGji + FjnSki — FrnSji + SjnFwi - SknFji + 2(SkjFin + FigSin)]

along with the tensor Sy;i of type (0,3) and given by
Skii = (VkRji - VjRk) + % (9uViR}' — giiViR+ FiiViSi- Fji ViSit + 2FViSit)
are known to us in Kaehlerian spaces.

2. Generalised Recurrent Kaehlerian space:

A Riemannian manifold V, whose curvature tensor satisfies the relation
_ h h h
ViRii" = a;Ryi " + by (8 gji — 8 ki)

has been called generalized recurrent Riemannian space by U. C. de and N. Guha [1].
Following the above we will introduce

Definition: A Kaehler space whose curvature tensor satisfies the relation
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(2.1) VR =a;Ryi™ + by (8 "gji — 8;"gwi + Fi"Fji — F;"Fig — 2FF™)
Will be called generalized recuurentKaehler space or briefly GRK,.

It is clear from (2.1) that whenb; = 0, a GRK, reduces to a recurrent Kaehler space. Further
we know if a Kaehler space is of constant holomorphic sectional curvature K, then its curvature tensor
Ry;i" takes the form

K
(22) Rg'= (8" gji — 8" gii + Fi"Fji — Fj"Fig — 2FigF;™)
[See Fukami([4],[5]) and Yano and Mogi([18],[19])].

and so, for a Kaehler space of constant holomorphic sectional curvature K, from (2.1) and
(2.2) we have

4
Vle].l,h = (al + ;bl)Rkjih
Showing that the space is always recurrent and thus, we have

Theorom 2.1 A generalised recurrent kaehler space of constant holomorphic sectional curvature is
identical with a recurrent Kaehler space.

Keeping the above into mind, now onward, we shall assume that our Kaehlerian space is not a
space of constant holomorphic sectional curvature.

As an immediate consequence of (2.1) with the help of

Vi8ij =0 » Vgl =0, V.67 =0 and
1_ 0 1 (1 my( 1 ml( 1 _
Rijie' = 57 {ad = m{u} + {ik {mj} - {ij}{mk}a”dFﬁ = i
together with Fii=0, 6ii=n, we get (2'3)V1Rkjih = ale]-ih + bl(gkhgji - g]-hgki + FkhF]'i —

FinFri — 2FFin)
(24)  ViRj = a;Rji + (n + 2)byg;;
and
(25) V,R=aR+n(n+2)b;
Now, if R=0,the equation (2.5) yields
b1 =0
and hence from (2.1) we have

ViR "=aiRy"

which shows that space again reduces to a recurrent Kaehler space and thus we have

Theorem 2.2 A generalised recurrent Kaehler space if vanishing Riemannian curvature is a recurrent
Kaehlerspace.

The above theorem suggests us that a generalisedrecurrentKaehler space must not have zero
Riemannian curvature.
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Again, if R is a covariant constant

ie.V,R=0

then from (2.5) we have

(26) a+n(n+2)h=0

Which shows that vectors a;and b;are not linearly independent and so we can state

Theorem?2.3IfRiemannian curvature of a generalised recurrent Kaehler space is covariant constant
then the vectors a; and b; are linearly dependent.

In a Kaehler space with vanishing Bochner curvature tensor, Matsumoto [8] has found the
identity

(27) 4(Tl + 1)VkR]l = gkivj R + gk]VlR + Zg]LVkR - ijFirVrR - FkiF}'rVTR
Which on multiplication with g and using the identities

gij9% =8F and Vigy_o . Vg =0 , V8 =0and F/F! = —6!'&F; = —F;
yields (28) ViR=0
On using this in (2.5), we have

Theorem 2.4 In a generalised recurrent Kaehler space with vanishing Bochner curvature tensor, the
vectors a; and b; appearing in (2.1) are not linearly independent.

On contracting (2.1) with respect to h and | and using (1.2) and F{V,S;; = V;Rjx — ViR
we find

VkRji = ViR = aRyjit + bigji — bigki — bFji + bjFyi + 2Fy;b;

Where b, = —F," b, and a similar relation holds ford; also.

Further, from (2.4) and V;F{* = 0&S;;- R,;F{", we get

(29)  FlViSj = @;Sk; + (n + 2)b;Fy;

From, these two equations by a direct calculation we have

(2.10) 2a.R;* — a;R = (n + 2)(n — 2)b;

Thus, we have
Theorem 2.5 In a generalised recurrent Kaehlerian spaces the identity (2.10) holds good.

A direct calculation based on HP-curvature tensor, (2.1) and the other identities obtained in
this section yields the following

ViPyjin = a;Ryjin + bl(gkhgji — 9jnGki + FinFji — FinFii — ZijFih)
1
+ mT2) [9in(@iRyi + (n + 2)bigr) + grn(aRji + (n + 2)b1gj;)

+ Fp(aiRmi + (M + 2)bigm) F" — Fen(@Rii + (0 + 2)bygmi) ™
+ 2Fp(aRmj + (M + 2)by g )]

Which on multiplication by F™ in view ofV;F/* = 0 and (1.7(f)) gives
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(n+3)
U nr2)

(2.11) (v, Pkﬂh)Flh Sik + biFy;

Now we suppose that the Kaehlerian space is holomorphically symmetric [6]. Then from
(2.11) we immediately have

(n+3)5k + blej = 0

n+2)J
Or,
+3
0=gq §n+2; Ry — b1 gric
Showing that
(n+2)bla
(2 12) R?"k (n+3)|al? g]k

And so, if vectors a and b are not orthogonal, we find that
Rik < gik

Theorem 2.6 If a generalised recurrent Kaehlerian spaces is holomorphically symmetric also and the
associated vectors a; and b; are not orthogonal, then it reduces to a KaehlerEinstein space.

Further if a; and b, are orthogonal, from (2.11) we find that
Rik:0
And consequently, R=0. Thus

Theorem 2.7 The generalised recurrent Kaehlerianspaces with mutually orthogonal vectors is if
associated holomorphically projective symmetric also then its scalar curvature vanishes identically.

With the help of F, VR = 2V,S{,FiV,S;; = V;Rj; — V;Ry, and (1.3) we find that the tensor
field Sy reduces into the form

1
(2.13) Sii = Fi'VeSjy + 5 {(9riViR = 9iViR) + (FiiF;* — FyeFy" + 2FiF)VeR}

And so the value of this tensor is generalized recurrent Kaehlerian spaces in view of (2.5) and
(2.9) will be

Sq= diSej + (+ DbiFi; + - {(guts — gjiaw) — (Fuds + Fy — 2F3;)}R +
(n+2) {gribj — 9jibx — Fxibj + Fj;by — 2Fj;;b;}R
Since,
Skii+Siik+Sikj = 0
We have from the above equation
(Sij + 22 Fip) @ + (S + 22 F) @i+ (S + 2 Fi) @+(n + 2)R{BiFej + beFy; + byFye} =
0
Which after multiplying by a'alak and using &;a‘ =0 gives
(2.14) R(n+2)b;al = 0

and consequently, we have
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Either(i) R=0 or(ii) bja'=0
Therefore, we find
Theorem 2.8 A generalised recurrent Kaehler space satisfies one of the following

(M It is a space of zero Reimann curvature.
(i) The associated vector a and b satisfy

atbt =0
3. Generalised Ricci-recurrent Kaehlerian Manifolds:

Generalised Ricci-recurrent Riemannian spaces have been introduced and studied by De, U.
C., Guha, N. and Kamilya, D. [2]. Following them we shall call a Kaehlerian space to be generalised
Ricci recurrent provided the Ricci tensor satisfies

(31) VhRji = ahle' + bhgji
When by, vanishes identically, it is clear that
VhRji = ahle'

and so, the space is Ricci recurrent and when an and by both vanish simultaneously, then it is
Ricci symmetric. Thus, for the existence of a generalised Ricci recurrent space, it is essential that
these vector field are always non vanishing.

As an immediate consequence of (3.1) after multiplication by g/ is
(32) V4R =auR +nby
Thus, if R=0, we find that

bh=0

and consequently b, = 0 and so the genralised Ricci recurrent Kaehlerian space reduces into a Ricci
recurrent space. Thus, we have

Theorem 3.1 The Riemannian curvature of a generalised Ricci recurrent space cannot be zero.
Or
Generalised Ricci recurrent Kaehler space of zero Riemann curvature does not exist.
Again, if R is covariant constant then from (3.2) we find that
anR+nbp=0

which shows that an and by, are linearly dependent. Conversely if asnR+nbn = 0, then (3.2)it is
evident that

V;R = 0 and therefore, we have

Theorem 3.2 The Riemann curvature of a generalised Ricci recurrent Kaehler space is constant if and
only if vectors an and by, are related by (3.3)

Again from (3.1) we find
(34) VhRjk = ahRjk + bh(Sjk

Which on contraction with respect to h and k and on using the identity
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k _ 1
ViR" =S VR
and (3.2) gives
(35) 2anR" = q;R + (n — 2)b;

On differentiatingS;; = R,;F; covariantly with respect to x"and usinngFl-h = 0and (3.1), we
get

(36) Vthi = athi + bthi

On substituting from (3.6) and (3.2) inF,ﬁVtSﬁ = V;Rjx — V;Ry and on simplifying with the
help of

F'FP = -6/, we find
(@ Sj; + bicFi)*+(aiRj — ajRy) + (bigjic — bjgix) = 0
Which on multiplication by g* yields
@ S;* — nb; + a;R;' — ;R = 0
On using (3.5) in it, we find
28,5 — 2nb; + q;R + (n — 2)b; — 2a;R = 0
(B.7)  2&S* =aR+ m+2)b;
And consequently from (3.7) and (3.5), we find
(38) by =[S — anR"]
Thus, we have got a form of b; and therefore, we may state

Theorem 3.3 The vector by, associated with a generalised Ricci recurrent Kaehlerian space has the
form (3.8)

On substituting from (3.1) and (3.2) in (2.13), we find
1
Skii = {aKRji + bigji — ajRui — bjgui} + 5-{gi(ajR + nb;) — gji(axR + nby)} +
— {FiF} — FyF + 2FyFf}(aR + nby)

Which on multiplying by g' and using (3.5) yields

(39 ax= —Sijigji
Thus, we have determined the form of ax in terms of tensor field Sy and so we state
Theorem 3.4 The vector field ax of generalised Ricci recurrent Kaehlerian space is given by (3.9).
In a Kaehlerian space with vanishing Bochner curvature tensor, Mastumoto has proved that
equation (2.7) holds good

On substituting from (3.1) and (3.2) in (2.7), we find
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4(n + 1){akRji + bkg]'i} - gki(a]-R + nb]) — 8Kj (aiR + nbi) - Zgji(akR + nbk) +
ijFir(arR + Ilbr) + FkiF]-r(arR + Ilbr) =0

Which after transvection with g’ gives
axR+byn=20
Which in view of (3.2) gives
V,R=0
i.e. space is of constant Riemannian curvature and thus, we have

Theorem 3.5 The generalised Ricci recurrent Kaehlerian space with vanishing Bochner curvature is
of constant curvature.

4.Generalised Ricci 2-recurrent Kaehlerian Space:

An n-dimensional Kaehlerian manifold is said to be generalized Ricci 2-recurrent Kaehlerian
manifold if the Ricci tensor of the space satisfies

(41) VleRji = aleRji + blkRji

Where a; is a covariant vector and by is covariant tensor of order 2 From the definition it is
clear that when a; vanishes identically, then the space reduces to a Ricci-2 recurrent space. From (4.1)
by simple calculation, we find

(4.2) V,VkR = a;ViR + bR
(4.3)  V,ViR = q;VxR + 2b,R;,"
Where the identity V; R;* = > V;R has been used.
The above two equations show that
(44) by = %berkr
Thus, the tensor of recurrences has got a specified form.
From (4.2) it is clear that when R is constant then
by R=0
And thus, eitherR=0 orb;;,=0.

Now when by, vanishes the space loses its nature of being generalised Ricci 2 recurrent and
therefore the only option is that R=0 and thus we have

Theorem 4.1 If the scalar curvature of a generalised Ricci 2-recurrent Kaehlerian space is a constant
then it must be zero. Again since

V,VxR = V,V;R
From (4.2) we immediately have
a;ViR —apViR + R(by, — b)) =0
And so that if the tensor by, of recurrence is a symmetric tensor, we find that

aleR = aleR

6603



Generalised Recurrent Spaces

Which shows that V,, R must be a quantity proportional to ax and hence we have

Theorem 4.2 If the tensor of recurrence of a generalised Ricci 2-recurrent Kaehlerian space is
symmetric, then VR is a vector along the associated vector ax.

As an immediate consequence the equation (4.1), we have
(45) Vlkaji = aleSji + bliji
WhereV;F/* = 0 andS;; = R,;F] has been used.

On differentiating covariantly the HP-curvature tensor, first with respect to x™ and then with
respect to x'and usingVyg;; = Vkg" =0, Vi8; = 0&g;;9™ = &, (4.1), (4.5) and the equation
of HP-curvature tensor itself. We find

(4.6)  V\ViPyji" — a1V Piji" = bimPiji” = ViViRiji" — aVmRyji™ — bumRucji"

Thus, we find that when the Kaehlerian space is generalised Ricci 2-recurrent then equation
(4.6) holds good. Conversly if we assume that (4.6) holds good then on contracting (4.6) with respect
to h andk, we find that

ViVinRji = a;ViuRji + by Rj;

Where we have used Py ﬁ" = 0 andR;; = Ri’]?k . The above equation is nothing but equation
(4.1) and so our space is generalised Ricci 2-recurrent and thus we have

Theorem 4.3 A Kaehlerian space is genralised Ricci 2-recurrent if and only if the equation (4.6)
holds.

By the same method adopted as above, we can get two more equations similar to (4.6), one
for the Bochner curvature tensor and the other for the Conharmonic curvature tensor, and proceeding
exactly as above one can get

Theorem 4.4 A Kaehlerian space is generalised Ricci 2-recurrent if and only if
ViViBiji" — @V Buji" = bimBiji" = ViV Ryeji" — @V Ricji" — bimRiej"
holds.
Theorem 4.5 A Kaehlerian space is generalised Ricci 2-recurrent if and only if
ViVinCrji" = @ VmCiji”™ = bimCieji™ = ViViRiji" — Vi Ry ji™ — bimRyji"
holds.
5. Vector fields in generalised recurrent Kaehlerian spaces:

In Kaehler space a parallel vector field is the vector field whose covariant derivative vanishes
identically, i.e.,

(51) Vvi=0
If we putd’ = F;'v/ then in view ofV;F/*= Ofrom (5.1) we have
On making the use of Ricci identity

(5.2) Vi Vjv" — Y,V vl = Ry v
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And the Bianchi identities, we have following results
(5.3) (a) V'Rajk =0, VR, =0

(b)ﬁaRhajk = 0, ﬁaRaj =0

(54) (a) vaVthajk = O,Ualeaj =0
(b) ﬁalehajk - O,ﬁaleaj =0
(5.5) (a) VAV,Ry i = 0, vAVGR;; = 0, v V4R =0

(b)ﬁaVaRm-jk = O,ﬁaVaRij = 0, ﬁaVaR =0

Now on differentiating (5.3) covariantly with respect to x‘and using (2.1) (i.e. on supporting
K., to be generalised recurrent space) and (5.1), we find

aRyji"vt + by (v;8" — 8" vy — B9 + F'vy) — 2F,;5"b=0
On contracting the above equation with respect to h andk, we get
(5.6) aleivi +(n+2)bv; =0
Which after multiplication with @ and use of a;a@'=0 gives
ba' =0
and thus, we get

Theorem 5.1 If generalised recurrent Kaehlerian space admits a parallel vector field then its
associated vectors a a; and b, satisfy a;b* = 0.

On the other hand, on multiplying (5.6) by a!, we find
(5.7)  (Ri-Cgj)v'=0

—(n+2)blal
lal?

Where C =

Clearly C is a non-zero scalar, when vectors a; and b; are not orthogonal and becomes zero
when they are orthogonal. Further as the (5.7) holds good for arbitrary vector field, we have

le‘ 08 g}l When blal * O
and
Rj; =0 when bja'=0

Thus, we conclude that

Theorem 5.2 If generalised recurrent Kaehlerian space admits a parallel vector field and associated
vectors a; and b; are orthogonal, then it space becomes a Kaehlerian Einstein space.

Theorem 5.3 If generalised recurrent Kaehlerian space admits a parallel vector field and associated
vectorsa; and b; are orthogonal, then it reduces to a space of zero Riemannian curvature.

Now, in the following space will be assumed to be generalised Ricci recurrent, so that the
identities of article 3 holds good.
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On differentiating (5.3)(b) covariantly with respect to x" and using (3.1), (5.1) and (5.3)(b)
after simplification we get that

thJ:O
shows that there are two possibilities

(1 The parallel vector field is null vector field.
(i) The vector field v; is null vector field.

Since by#0 we immediately find that v;=0 and therefore

Theorem 5.4 The parallel vector field in a generalised Ricci recurrent Kaehlerian spaces reduces to a
null vector.
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