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Abstract 

In this paper, we prove a coincidence point and fixed point result in partially ordered metric spaces. The proved 

result generalizes and extends some Known results in the literature. 
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1. Introduction and preliminaries 

The Banach contraction principle plays a vital role to obtain an unique solution of the results. There are a lot of 

generalization of the Banach contraction principle in the literature (see [1]-[8] and references cited therein.) 

Several research work has been obtained on various spaces such as quasi metric spaces, probabilistic metric 

spaces, D-metric spaces, fuzzy metric spaces, G-metric spaces, cone metric spaces, complex valued metric spaces, 

and so on to prove the existing results. Recently , many authors have obtained fixed point, common fixed point 

and coincidence point results in partially ordered metric spaces (see [ 9, 10, 11, 12, 13, 14, 15, 16, 17,]). 

                The aim of this paper is to prove some coincidence point and common fixed point results in partially 

ordered metric spaces for a pair of self-mappings satisfying a generalized contractive condition of rational type. 

Our results generalize and extend the results of Rao et al.[14] and Chandok et al.[15] in ordered metric space.  

 

The following definitions are frequently used in results given in upcoming sections. 

Definition 1. The triple (𝑋, 𝑑, ⪯) is called a partially ordered metric space, if (𝑋, ⪯) is partially ordered set 

together with (𝑋, 𝑑)  is a metric space.  

Definition 2.  If (𝑋, 𝑑) is a complete metric space, then the triple (𝑋, 𝑑, ⪯) is called a partially ordered complete 

metric space. 

Definition 3.  Let (𝑋, ⪯) be partially ordered set. A self-mapping 𝑓:X → X is said to be strictly increasing, if 𝑓(x) 

≺ 𝑓(y), for all x, y ∈ X  with x ≺ y and is also said to be strictly decreasing, if 𝑓(x) ≻ 𝑓(y), for all x, y ∈ X  with x 

≺ y.  

Definition 4.  A point x ∈ A, where A is a non-empty subset of metric space (𝑋, 𝑑) is called a common fixed 

(coincidence) point of two self-mappings 𝑓 and  T if 𝑓𝑥 = T𝑥 = 𝑥(𝑓𝑥 = 𝑇𝑥). 

Definition 5. The two self-mappings 𝑓 and  T defined over a subset A of a metric space (𝑋, 𝑑) are called 

commuting if 𝑓T𝑥 = T𝑓𝑥  for all x ∈ A.  
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Definition 6. Two self-mappings 𝑓 and  T defined over A ⊂ X  are compatible, if for any sequence {xn} with 

lim 𝑓xn
𝑛→+∞

= lim Txn
𝑛→+∞

 = 𝑢, for some 𝑢 ∈ A then lim
n →+∞

d(T(𝑓xn), 𝑓(Txn)) = 0. 

Definition 7. Two self-mappings 𝑓 and T defined over A ⊂ X are said to be weakly compatible, if they commute 

at their coincidence points. i.e., if 𝑓𝑥 = 𝑇𝑥 then 𝑓T𝑥 = T𝑓𝑥. 
Definition 8.  Let 𝑓 and  T be two self-mappings defined over a partially ordered set (𝑋, ⪯). A mapping T is 

called a monotone 𝑓 non-decreasing if  

                     𝑓𝑥 ⪯ 𝑓𝑦 implies T𝑥 ⪯  T𝑦, for all,  𝑥, 𝑦 ∈ X. 
Definition 9.  Let A be a non-empty subset of a partially ordered set (𝑋, ⪯) If any two elements of A are 

comparable then it is called well ordered set.  

Definition 10.  A partially ordered metric space (𝑋, 𝑑, ⪯) is called an ordered complete, if for each convergent  

sequence  {𝑥𝑛}𝑛=0
+∞   ⊂ X , one of the following condition holds   

 

• If  {𝑥𝑛}  is a nondecreasing sequence in X such that 𝑥𝑛 → 𝑥  implies  𝑥𝑛 ⪯ 𝑥, for all n ∈ ℕ that is, 𝑥 = sup{𝑥𝑛}  or 

• If  {𝑥𝑛}  is a nonincreasing  sequence in X such that 𝑥𝑛 → 𝑥  implies 𝑥 ⪯ 𝑥𝑛 , for all n ∈ ℕ that is, 𝑥 = inf{𝑥𝑛}.   
 

2. Main Results 

In this section, we prove some coincidence point theorem in the context of ordered metric space. 

Theorem  1.  Let (𝑋, 𝑑, ⪯) be a complete partially ordered metric space. Suppose that the self-mappings  𝑓 and  

T 𝑜𝑛 X  are continuous, T  is a monotone  𝑓-nondecreasing.T(X) ⊆ 𝑓(X) and satisfying the condition: 

𝑑(𝑇𝑥, 𝑇𝑦)   ≤ 𝛼 (
𝑑( 𝑓𝑥 ,𝑇𝑥 )𝑑( 𝑓𝑦 ,𝑇𝑦 )

𝑑( 𝑓𝑥, 𝑓𝑦 )
)+ 𝛽[𝑑(𝑓𝑥,  𝑓𝑦 )] + 𝛾[𝑑(𝑓𝑥, T𝑥 ) + 𝑑(𝑓𝑦, T𝑦 )]  

                              + 𝛿[𝑑(𝑓𝑥, 𝑇𝑦 ) + 𝑑(𝑓𝑦, 𝑇𝑥 )]                     …….(2.1) 

for all x,y in X with 𝑓(𝑥) ≠ 𝑓(𝑦) are comparable, where α, β, γ, δ ∈ [0 , 1) with 0 ≤ α + β + 2γ + 2δ < 1. If there 

exists a point x0 ∈ X  such that 𝑓(x0) ⪯ T(x0) and the mappings T and 𝑓 are compatible, then T and 𝑓 have a 

coincidence point in X.   

Proof.  Let   x0 ∈ X such that  𝑓(x0) ⪯ T(x0). Since from hypotheses, we have  T(X) ⊆ 𝑓(X) then, we can choose a 

point  x1 ∈ X  such  that  𝑓x1 = Tx0. But  Tx1 ∈ 𝑓(X) then, again there exists another point  x2 ∈ X  such that  𝑓x2 = 

Tx1. By continuing the same way, we can construct a sequence {xn} in X such that 𝑓xn+1 = Txn. for all n. 

Again, by hypotheses, we have 𝑓(x0) ⪯ T(x0) = 𝑓(x1) and T is a monotone 𝑓 – nondecreasing mapping 

then, we get  T(x0) ⪯ T(x1). Similarly, we obtain T(x1) ⪯ T(x2), since 𝑓(x1)  ⪯  𝑓(x2) and then by continuing the 

same procedure, we obtain that  

                                         T(x0)  ⪯ T(x1) ⪯ T(x2)  ⪯ …….. T(xn)  ⪯ T(xn+1)  ⪯ ……. 

The equality  T(xn+1) = T(xn) is impossible because  𝑓(xn+2) ≠ 𝑓(xn+1) for all n∈ ℕ.  Thus  

𝑑(𝑇(𝑥𝑛), 𝑇(𝑥𝑛+1))  > 0  for all n ≥ 0 therefore, from contraction condition (2.1), we have  

𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛)  ≤ 𝛼 (
𝑑(𝑓xn+1 ,   𝑇𝑥𝑛+1) 𝑑(𝑓𝑥𝑛 ,   𝑇𝑥𝑛)

d(𝑓xn+1 ,   𝑓𝑥𝑛)
) + 𝛽[d(𝑓xn+1 , 𝑓𝑥𝑛)]  

                             +𝛾[𝑑(𝑓xn+1 , 𝑇𝑥𝑛+1) + 𝑑(𝑓𝑥𝑛 , 𝑇𝑥𝑛)] + 𝛿[𝑑(𝑓xn+1 , 𝑇𝑥𝑛) + 𝑑(𝑓𝑥𝑛 , 𝑇𝑥𝑛+1)] 

 

                            = 𝛼 (
𝑑(𝑇𝑥𝑛 ,   𝑇𝑥𝑛+1) 𝑑(𝑇𝑥𝑛−1 ,   𝑇𝑥𝑛)

d(𝑇𝑥𝑛 ,   𝑇𝑥𝑛−1 )
) + 𝛽[d(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1 )] +      

                              + 𝛾[𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) + 𝑑( 𝑇𝑥𝑛−1 , 𝑇𝑥𝑛)] +𝛿[𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛) + 𝑑(𝑇𝑥𝑛−1 , 𝑇𝑥𝑛+1)] 

 

                              = 𝛼[𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)] + 𝛽[d(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1 )] + 𝛾[𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) + 𝑑(𝑇𝑥𝑛−1 , 𝑇𝑥𝑛)]         
                              + 𝛿[𝑑(𝑇𝑥𝑛−1 , 𝑇𝑥𝑛+1)] 

                                 ≤ 𝛼[𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)] +𝛽[d(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1 )] + 𝛾[𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) + 𝑑(𝑇𝑥𝑛−1  , 𝑇𝑥𝑛)]  
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                                 + 𝛿[𝑑(𝑇𝑥𝑛−1 , 𝑇𝑥𝑛) + 𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)]     

                              = (𝛼 + 𝛿 + 𝛾) 𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) +(𝛽 + 𝛾 + 𝛿)𝑑(𝑇𝑥𝑛−1 , 𝑇𝑥𝑛) 

which implies that  

                                𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) ≤  (
𝛽+𝛾+𝛿

1−(𝛼+𝛾+𝛿)
)  d(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1 ) 

Continuing the same process up to (n-1) times, we get  

                                 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) ≤ (
𝛽+𝛾+𝛿

1−(𝛼+𝛾+𝛿)
)

𝑛

d(𝑇𝑥1 , 𝑇𝑥0 ) 

Let  𝑘 = 
𝛽+𝛾+𝛿

1−(𝛼+𝛾+𝛿)
 ∈ [0,1), then from triangular inequality for m ≥ n, we have  

𝑑(𝑇𝑥𝑚 , 𝑇𝑥𝑛) ≤ d(𝑇𝑥𝑚  , 𝑇𝑥𝑚−1 ) + d(𝑇𝑥𝑚−1 , 𝑇𝑥𝑚−2) + … … … + 𝑑(𝑇𝑥𝑛+1 , 𝑇𝑥𝑛) 

                                       ≤ (𝑘𝑚−1 + 𝑘𝑚−2 +  … … … + 𝑘𝑛) d(𝑇𝑥1 , 𝑇𝑥0 ) 

                                       ≤  
𝑘𝑛

1−𝑘 
 d(𝑇𝑥1 , 𝑇𝑥0 ) 

as m , n → +∞ , 𝑑(𝑇𝑥𝑚, 𝑇𝑥𝑛) → 0 , which shows that the sequence {Txn} is a Cauchy sequence in X. So, by the 

completeness of X, there exists a point  𝑢 ∈ X such that Txn   → 𝑢 as n → +∞. 

Again, by the continuity of T , we have  

                                                         lim
   n →+∞

T(Txn) =  𝑇( lim
n →+∞

(Txn)) =  𝑇𝑢. 

But  𝑓xn+1 =  Txn , then 𝑓xn+1  → 𝑢 as 𝑛 → +∞ and  from the compatibility for  T and 𝑓 , we have   

lim
n →+∞

d(T(𝑓xn), 𝑓(Txn)) = 0. 

Further by triangular inequality , we have  

                             𝑑(𝑇𝑢 , 𝑓𝑢) = 𝑑(𝑇𝑢, 𝑇(𝑓xn)) + 𝑑(𝑇(𝑓𝑥𝑛), 𝑓(Txn)) + 𝑑(𝑓(Txn), 𝑓𝑢)  

On taking limit as n → +∞ in both sides of the above equation and using the fact that T and 𝑓 are continuous 

then, we get d(𝑇𝑢 , 𝑓𝑢) = 0. Thus  𝑇𝑢 = 𝑓𝑢. Hence , 𝑢 is a coincidence point of T and 𝑓 in X.  

Corollary   1. Let (𝑋, 𝑑, ⪯) be a complete partially ordered metric space. Suppose that the self-mappings 𝑓 and T 

on X are continuous, T is a monotone  𝑓-nondecreasing, T(X) ⊆ 𝑓(X) and satisfying the following condition  

                                             𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (
𝑑(𝑓𝑥 ,𝑇𝑥 )𝑑( 𝑓𝑦 ,𝑇𝑦 )

𝑑( 𝑓𝑥, 𝑓𝑦 )
) + 𝛾[𝑑(𝑓𝑥, T𝑥) + 𝑑( 𝑓𝑦, T𝑦 )]  

for all x , y in X  with 𝑓(𝑥) ≠ 𝑓(𝑦)  are comparable and for some 𝛼, 𝛾 ∈ [0,1) with 0 ≤ 𝛼 + 2𝛾 < 1. 

If there exists a point 𝑥0 ∈ X  such that  𝑓(x0) ⪯ T(x0) and the mapping T and 𝑓 are compatible, then T and 𝑓 have 

a coincidence point in X.  

Proof. Set 𝛽 = 0 , 𝛿 = 0 in Theorem 1.  

Corollary  2. Let (𝑋, 𝑑, ⪯) be a complete partially ordered metric space. Suppose that the self-mappings 𝑓 and 

T on X are continuous, T is a monotone 𝑓-nondecreasing, T(X) ⊆ 𝑓(X) and satisfying the following  condition  

                                              𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛽[𝑑(𝑓𝑥, 𝑓𝑦)] + 𝛾[𝑑(𝑓𝑥, T𝑥) + 𝑑(𝑓𝑦, T𝑦)]  

for all x , y in X with 𝑓(𝑥) ≠ 𝑓(𝑦)  are comparable and for some 𝛽, 𝛾 ∈ [0,1) with 0 ≤ 2𝛾 + 𝛽 < 1. 

If there exists a point 𝑥0 ∈ X  such that  𝑓(x0) ⪯ T(x0) and the mapping T and 𝑓 are compatible, then T and 𝑓 have 

a coincidence point in X. 

Proof. The proof can be obtain by setting  𝛼 = 0 , 𝛿 = 0 in Theorem 1.  
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Theorem  2. Let (𝑋, 𝑑, ⪯) be a complete partially ordered metric space. Suppose that 𝑓 and  T are self-mappings 

on X, T is a monotone 𝑓- nondecreasing, T(X) ⊆ 𝑓(X) and satisfying  

𝑑(𝑇𝑥, 𝑇𝑦)   ≤ 𝛼 (
𝑑(𝑓𝑥 ,𝑇𝑥 )𝑑(𝑓𝑦 ,𝑇𝑦 )

𝑑(𝑓𝑥, 𝑓𝑦)
)+ 𝛽[𝑑(𝑓𝑥, 𝑓𝑦)] + 𝛾[𝑑(𝑓𝑥, T𝑥) + 𝑑(𝑓𝑦, T𝑦)]  

                                    + 𝛿[𝑑(𝑓𝑥, 𝑇𝑦 ) + 𝑑(𝑓𝑦, 𝑇𝑥 )]                                                                   ……………(2.2) 

for all x,y in X with 𝑓(𝑥) ≠ 𝑓(𝑦) are comparable, where α, β, γ, δ ∈ [0 , 1) with 0 ≤ α + β + 2γ + 2δ < 1. If there 

exists a point x0 ∈ X  such that 𝑓(x0) ⪯ T(x0) and {xn} is a nondecreasing sequence in X such that 𝑥𝑛  → 𝑥, then 

𝑥𝑛 ⪯ 𝑥 for all 𝑛 ∈ ℕ. 

If 𝑓(𝑋) is a complete subset of 𝑋, then 𝑇 and 𝑓 have a coincidence point in 𝑋. Further, if  𝑇 and 𝑓 are weakly 

compatible, then 𝑇 and 𝑓 have a common fixed point in 𝑋. moreover, the set of common fixed points of 𝑇 and 𝑓 is 

well ordered if and only if 𝑇 and 𝑓 have one and only one common fixed point in 𝑋. 

Proof.  Suppose 𝑓(𝑋) is a complete subset of 𝑋. As we know from the proof of Theorem 1, the sequence {𝑇𝑥𝑛} is 

a Cauchy sequence and hence {𝑓𝑥𝑛} is also a Cauchy sequence in (𝑓(X), 𝑑) as 𝑓xn+1 = 𝑇𝑥𝑛   and T(X) ⊆ 𝑓(X). 

Since 𝑓(X) is complete then there exists some  𝑓𝑢 ∈ 𝑓(X) such that 

lim
   n →+∞

T(xn) =  lim
n →+∞

𝑓(xn)  = 𝑓𝑢. 

Also note that the sequence {𝑇𝑥𝑛} and {𝑓𝑥𝑛} are nondecreasing and from hypotheses, we have 𝑇(𝑥𝑛) ⪯ 𝑓(𝑢) and 

𝑓(𝑥𝑛) ⪯ 𝑓(𝑢) for all 𝑛 ∈ ℕ. But 𝑇 is a monotone 𝑓- nondecreasing then, we get 𝑇(𝑥𝑛) ⪯ 𝑇(𝑢) for all 𝑛. Letting 

𝑛 → +∞, we obtain that 𝑓(𝑢) ⪯ 𝑇(𝑢). 

Suppose that 𝑓(𝑢) ≺ 𝑇(𝑢) then define a sequence {𝑢𝑛} by 𝑢0 = 𝑢 and 𝑓un+1 = 𝑇𝑢𝑛 for all 𝑛 ∈ ℕ. An argument 

similar to that in the proof of theorem 1 yields that {𝑓𝑢𝑛}  is a nondecreasing sequence and 

lim
     n →+∞

𝑓(un) =  lim
n →+∞

T(un)  = 𝑓(𝑣) for some 𝑣 ∈ 𝑋. So from hypotheses, it is clear that sup 𝑓(𝑢𝑛) ⪯     𝑓(𝑣) and 

sup T(un)  ⪯ 𝑓(𝑣), for all 𝑛 ∈ ℕ. Notice that 

𝑓(𝑥𝑛)  ⪯  𝑓(u)  ⪯  𝑓(𝑢1)  ⪯  … … …   ⪯ 𝑓(𝑢𝑛)  ⪯  … … ⪯ 𝑓(𝑣). 

 Case:1 Suppose if there exists some  𝑛0 ≥ 1. such that  𝑓(𝑥𝑛0
) =  𝑓(𝑢𝑛0

)   then, we have 

𝑓(𝑥𝑛0
) = 𝑓(𝑢) = 𝑓(𝑢𝑛0

) =  𝑓(𝑢1) = 𝑇(𝑢). 

     Hence, 𝑢 is a coincidence point of 𝑇 and 𝑓 in 𝑋. 

     Case:2 suppose that  𝑓(𝑥𝑛0
) ≠ 𝑓(𝑢𝑛0

)   for all 𝑛 then, from (2.2), we have 

                    𝑑(𝑓𝑥𝑛+1, 𝑓𝑢𝑛+1) = 𝑑(Txn ,Tun) 

                                                                                 ≤ α (
𝑑(𝑓𝑥𝑛 ,𝑇𝑥𝑛 )𝑑(𝑓𝑢𝑛 ,𝑇𝑢𝑛)

𝑑(𝑓𝑥𝑛 ,𝑓𝑢𝑛)
) 

                                                    + 𝛽[𝑑(𝑓𝑥𝑛 , 𝑓𝑢𝑛)] + 𝛾[𝑑(𝑓𝑥𝑛 , 𝑇𝑥𝑛) + 𝑑(𝑓𝑢𝑛 , 𝑇𝑢𝑛)] 

                                                     + 𝛿[𝑑(𝑓𝑥𝑛 , 𝑇𝑢𝑛) + 𝑑(𝑓𝑢𝑛 , 𝑇𝑥𝑛)] 

      Taking limit as 𝑛 → +∞ on both sides of the above inequality, we get  

𝑑(𝑓𝑢, 𝑓𝑣) ≤  𝛽[𝑑(𝑓𝑢, 𝑓𝑣)] + 𝛿[𝑑(𝑓𝑢, 𝑓𝑣) + 𝑑(𝑓𝑣, 𝑓𝑢)] 

                                                               = (𝛽 + 2𝛿) 𝑑(𝑓𝑢, 𝑓𝑣). since (𝛽 + 2𝛿) < 1. 

      Thus we have  

                                                                    𝑓(𝑢) = 𝑓(𝑣) =  𝑓(𝑢1) = 𝑇(𝑢).      

Hence, we conclude that 𝑢 is a coincidence point of 𝑇 and 𝑓 in X.  

Now, suppose that 𝑇and 𝑓 are weakly compatible. Let 𝜔 be a coincidence point then,  
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                      𝑇(𝜔) = 𝑇(𝑓(𝑧)) = 𝑓(𝑇(𝑧)) = 𝑓(𝜔),   since  𝜔 =  𝑇(𝑧) = 𝑓(𝑧), for some 𝑧 ∈ X. 

Now by contraction condition, we have  

 𝑑(𝑇(𝑧), 𝑇(𝜔)) ≤  α (
𝑑(𝑓𝑧 , 𝑇𝑧)𝑑(𝑓𝑤 , 𝑇𝑤)

𝑑(𝑓𝑧 , 𝑓𝑤)
) + 𝛽[𝑑(𝑓𝑧 , 𝑓𝑤)] + 𝛾[𝑑(𝑓𝑧 , 𝑇𝑧) + 𝑑(𝑓𝑤, 𝑇𝑤)]    

+ 𝛿[𝑑(𝑓𝑧 , 𝑇𝑤) + 𝑑(𝑓𝑤, 𝑇𝑧)] 

                             ≤ (𝛽 + 2𝛿) 𝑑(𝑇(𝑧), 𝑇(𝜔)) 

as  (𝛽 + 2𝛿) < 1 , then 𝑑(𝑇(𝑧), 𝑇(𝜔)) = 0. Therefore, 𝑇(𝑧) = 𝑇(𝜔) = 𝑓(𝜔) = 𝜔. Hence, 𝜔 is a common fixed 

point of 𝑇 and 𝑓 in X.  

Now suppose that the set of common fixed points of 𝑇 and 𝑓 is well ordered, we have to show that the common 

fixed point of 𝑇 and 𝑓 is unique. Let 𝑢 and 𝑣 be two common fixed points of 𝑇 and 𝑓 such that 𝑢 ≠ 𝑣 then from 

(2.2), we have  

               𝑑(𝑢, 𝑣) ≤ α (
𝑑(𝑓𝑢 , 𝑇𝑢)𝑑(𝑓𝑣, 𝑇𝑣)

𝑑(𝑓𝑢 , 𝑓𝑣)
) + 𝛽[𝑑(𝑓𝑢 , 𝑓𝑣)] + 𝛾[𝑑(𝑓𝑢 , 𝑇𝑢) + 𝑑(𝑓𝑣 , 𝑇𝑣)]        

+ 𝛿[𝑑(𝑓𝑢 , 𝑇𝑣) + 𝑑(𝑓𝑣 , 𝑇𝑢)] 

                             ≤ (𝛽 + 2𝛿) 𝑑(𝑢, 𝑣) 

                             < 𝑑(𝑢, 𝑣), since (𝛽 + 2𝛿) < 1. 

Which is a contradiction. Thus, 𝑢 = 𝑣. Conversely, suppose 𝑇 and 𝑓 have only one common fixed point then the set 

of common fixed points of 𝑇 and 𝑓 being a singleton is well ordered. This completes the proof. 

Corollary 3.  Let (𝑋, 𝑑, ⪯) be a complete partially ordered metric space. Suppose that 𝑓 and  T are self-mappings on 

X, T is a monotone 𝑓- nondecreasing, T(X) ⊆ 𝑓(X) and satisfying 

                                 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (
𝑑(𝑓𝑥 ,𝑇𝑥 )𝑑( 𝑓𝑦 ,𝑇𝑦 )

𝑑( 𝑓𝑥 ,𝑓𝑦 )
) + 𝛾[𝑑(𝑓𝑥, T𝑥) + 𝑑(𝑓𝑦, T𝑦)] 

for all x,y in X with 𝑓(𝑥) ≠ 𝑓(𝑦) are comparable, where α, γ ∈ [0 , 1) with 0 ≤ α + 2γ < 1. If there exists a point 

x0 ∈ X  such that 𝑓(x0) ⪯ T(x0) and {xn} is a nondecreasing sequence in X such that 𝑥𝑛  → 𝑥, then 𝑥𝑛 ⪯ 𝑥 for all 

𝑛 ∈ ℕ.  

If 𝑓(𝑋) is a complete subset of 𝑋, then 𝑇 and 𝑓 have a coincidence point in 𝑋. Further, if 𝑇 and 𝑓 are weakly 

compatible, then 𝑇 and 𝑓 have a common fixed point in 𝑋. Moreover, the set of common fixed points of 𝑇 and 𝑓 is 

well ordered if and only if 𝑇 and 𝑓 have one and only one common fixed point in 𝑋. 

Proof. Set 𝛽 = 0 , 𝛿 = 0 in Theorem 2.  

Corollary 4. Let (𝑋, 𝑑, ⪯) be a complete partially ordered metric space. Suppose that the self-mappings 𝑓 and 

T on X , T is a monotone 𝑓-nondecreasing, T(X) ⊆ 𝑓(X) and satisfying  

                                              𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛽[𝑑(𝑓𝑥, 𝑓𝑦)] + 𝛾[𝑑(𝑓𝑥, T𝑥) + 𝑑(𝑓𝑦, T𝑦)]  

for all x,y in X with 𝑓(𝑥) ≠ 𝑓(𝑦) are comparable, where β, γ ∈ [0 , 1) with 0 ≤ 2𝛾 + 𝛽 < 1. If there exists a point 

x0 ∈ X  such that 𝑓(x0) ⪯ T(x0) and {xn} is a nondecreasing sequence in X such that 𝑥𝑛  → 𝑥, then 𝑥𝑛 ⪯ 𝑥 for all 

𝑛 ∈ ℕ.  

If 𝑓(𝑋) is a complete subset of 𝑋, then 𝑇 and 𝑓 have a coincidence point in 𝑋. Further, if 𝑇 and 𝑓 are weakly 

compatible, then 𝑇 and 𝑓 have a common fixed point in 𝑋. Moreover, the set of common fixed points of 𝑇 and 𝑓 is 

well ordered if and only if 𝑇 and 𝑓 have one and only one common fixed point in 𝑋. 

Proof.  set  𝛼 = 0 , 𝛿 = 0 in Theorem 2.  

Conclusion: In this paper, we prove a coincidence point and common fixed point results for compatible mappings 

in complete partially ordered metric space. Our results are generalizes and improve the results of Rao et al.[14] 

and chandok et al.[15].  
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