Turkish Online Journal of Qualitative Inquiry (TOJQI)
Volume 12, Issue 9, August 2021: 7612-7617

Research Article

Coincidence Point and Fixed-Point Theorem in Partially Ordered Metric Spaces Snehlata Mishra ${ }^{1}$, Anil Kumar Dubey ${ }^{2}$, Vaibhav Upadhyay ${ }^{3}$, Sanjay Sharma ${ }^{4}$
${ }^{1}$ Department of Mathematics, Dr.C.V.Raman University, kota, Bilaspur(C.G.), India.
${ }^{2,3,4}$ Department of Applied Mathematics, Bhilai Institute of Technology,
Bhilai House Durg, Chhattisgarh, 491001, India.
Snehmis76@gmail.com , anilkumardby70@gmail.com, vaibhavupadhyay138@gmail.com, sanjay.sharma@bitdurg.ac.in

Abstract

In this paper, we prove a coincidence point and fixed point result in partially ordered metric spaces. The proved result generalizes and extends some Known results in the literature.

Keywords and phrases: coincidence point, compatible mappings, partially ordered metric spaces.
2020 AMS Mathematics Subject Classification: 47H10, 54H25.

1. Introduction and preliminaries

The Banach contraction principle plays a vital role to obtain an unique solution of the results. There are a lot of generalization of the Banach contraction principle in the literature (see [1]-[8] and references cited therein.) Several research work has been obtained on various spaces such as quasi metric spaces, probabilistic metric spaces, D-metric spaces, fuzzy metric spaces, G-metric spaces, cone metric spaces, complex valued metric spaces, and so on to prove the existing results. Recently, many authors have obtained fixed point, common fixed point and coincidence point results in partially ordered metric spaces (see [9,10,11, 12, 13, 14, 15, 16, 17,]).

The aim of this paper is to prove some coincidence point and common fixed point results in partially ordered metric spaces for a pair of self-mappings satisfying a generalized contractive condition of rational type. Our results generalize and extend the results of Rao et al.[14] and Chandok et al.[15] in ordered metric space.

The following definitions are frequently used in results given in upcoming sections.
Definition 1. The triple (X, d, \preceq) is called a partially ordered metric space, if (X, \preceq) is partially ordered set together with (X, d) is a metric space.
Definition 2. If (X, d) is a complete metric space, then the triple (X, d, \leq) is called a partially ordered complete metric space.
Definition 3. Let (X, \leq) be partially ordered set. A self-mapping $f: X \rightarrow X$ is said to be strictly increasing, if $f(\mathrm{x})$ $\prec f(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $x<y$ and is also said to be strictly decreasing, if $f(\mathrm{x}) \succ f(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with x $<y$.
Definition 4. A point $x \in \mathrm{~A}$, where A is a non-empty subset of metric space (X, d) is called a common fixed (coincidence) point of two self-mappings f and T if $f x=\mathrm{T} x=x(f x=T x)$.
Definition 5. The two self-mappings f and T defined over a subset A of a metric space (X, d) are called commuting if $f \mathrm{~T} x=\mathrm{T} f x$ for all $x \in \mathrm{~A}$.

Definition 6. Two self-mappings f and T defined over $A \subset X$ are compatible, if for any sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ with $\lim _{n \rightarrow+\infty} f \mathrm{x}_{\mathrm{n}}=\lim _{n \rightarrow+\infty} \mathrm{Tx}_{\mathrm{n}}=u$, for some $u \in \mathrm{~A}$ then $\lim _{\mathrm{n} \rightarrow+\infty} \mathrm{d}\left(\mathrm{T}\left(f \mathrm{x}_{\mathrm{n}}\right), f\left(\mathrm{Tx}_{\mathrm{n}}\right)\right)=0$.
Definition 7. Two self-mappings f and T defined over $\mathrm{A} \subset \mathrm{X}$ are said to be weakly compatible, if they commute at their coincidence points. i.e., if $f x=T x$ then $f \mathrm{~T} x=\mathrm{T} f x$.
Definition 8. Let f and T be two self-mappings defined over a partially ordered set (X, \leq). A mapping T is called a monotone f non-decreasing if

$$
f x \leq f y \text { implies } \mathrm{T} x \leq \mathrm{T} y \text {, for all, } x, y \in \mathrm{X} .
$$

Definition 9. Let A be a non-empty subset of a partially ordered set (X, \leq) If any two elements of A are comparable then it is called well ordered set.
Definition 10. A partially ordered metric space (X, d, \leq) is called an ordered complete, if for each convergent sequence $\left\{x_{n}\right\}_{n=0}^{+\infty} \subset \mathrm{X}$, one of the following condition holds

- If $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow x$ implies $x_{n} \leq x$, for all $\mathrm{n} \in \mathbb{N}$ that is, $x=\sup \left\{x_{n}\right\}$ or
- If $\left\{x_{n}\right\}$ is a nonincreasing sequence in X such that $x_{n} \rightarrow x$ implies $x \leq x_{n}$, for all $\mathrm{n} \in \mathbb{N}$ that is, $x=\inf \left\{x_{n}\right\}$.

2. Main Results

In this section, we prove some coincidence point theorem in the context of ordered metric space.
Theorem 1. Let (X, d, \leq) be a complete partially ordered metric space. Suppose that the self-mappings f and T on X are continuous, T is a monotone f-nondecreasing. $\mathrm{T}(\mathrm{X}) \subseteq f(\mathrm{X})$ and satisfying the condition:

$$
\begin{align*}
d(T x, T y) & \leq \alpha\left(\frac{d(f x, T x) d(f y, T y)}{d(f x, f y)}\right)+\beta[d(f x, f y)]+\gamma[d(f x, \mathrm{~T} x)+d(f y, \mathrm{~T} y)] \\
& +\delta[d(f x, T y)+d(f y, T x)] \tag{2.1}
\end{align*}
$$

for all x, y in X with $f(x) \neq f(y)$ are comparable, where $\alpha, \beta, \gamma, \delta \in[0,1)$ with $0 \leq \alpha+\beta+2 \gamma+2 \delta<1$. If there exists a point $x_{0} \in \mathrm{X}$ such that $f\left(x_{0}\right) \leq \mathrm{T}\left(x_{0}\right)$ and the mappings T and f are compatible, then T and f have a coincidence point in X .

Proof. Let $x_{0} \in \mathrm{X}$ such that $f\left(x_{0}\right) \leq \mathrm{T}\left(x_{0}\right)$. Since from hypotheses, we have $\mathrm{T}(\mathrm{X}) \subseteq f(\mathrm{X})$ then, we can choose a point $x_{1} \in \mathrm{X}$ such that $f x_{1}=\mathrm{T} x_{0}$. But $\mathrm{T} x_{1} \in f(\mathrm{X})$ then, again there exists another point $x_{2} \in \mathrm{X}$ such that $f x_{2}=$ $\mathrm{T} x_{1}$. By continuing the same way, we can construct a sequence $\left\{x_{n}\right\}$ in X such that $f x_{n+l}=\mathrm{T} \mathrm{x}_{\mathrm{n}}$. for all n .

Again, by hypotheses, we have $f\left(x_{0}\right) \leq \mathrm{T}\left(x_{0}\right)=f\left(x_{1}\right)$ and T is a monotone f - nondecreasing mapping then, we get $\mathrm{T}\left(x_{0}\right) \leq \mathrm{T}\left(x_{1}\right)$. Similarly, we obtain $\mathrm{T}\left(x_{1}\right) \leq \mathrm{T}\left(x_{2}\right)$, since $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ and then by continuing the same procedure, we obtain that

$$
\mathrm{T}\left(\mathrm{x}_{0}\right) \leq \mathrm{T}\left(\mathrm{x}_{1}\right) \leq \mathrm{T}\left(\mathrm{x}_{2}\right) \leq \ldots \ldots . . \mathrm{T}\left(\mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{T}\left(\mathrm{x}_{\mathrm{n}+1}\right) \leq \ldots \ldots .
$$

The equality $\mathrm{T}\left(x_{n+1}\right)=\mathrm{T}\left(x_{n}\right)$ is impossible because $f\left(x_{n+2}\right) \neq f\left(x_{n+1}\right)$ for all $\mathrm{n} \in \mathbb{N}$. Thus $d\left(T\left(x_{n}\right), T\left(x_{n+1}\right)\right)>0$ for all $\mathrm{n} \geq 0$ therefore, from contraction condition (2.1), we have

$$
\begin{aligned}
d\left(T x_{n+1}, T x_{n}\right) \leq & \alpha\left(\frac{d\left(f \mathrm{x}_{\mathrm{n}+1}, T x_{n+1}\right) d\left(f x_{n}, T x_{n}\right)}{\mathrm{d}\left(f \mathrm{x}_{\mathrm{n}+1}, f x_{n}\right)}\right)+\beta\left[\mathrm{d}\left(f \mathrm{x}_{\mathrm{n}+1}, f x_{n}\right)\right] \\
& +\gamma\left[d\left(f \mathrm{x}_{\mathrm{n}+1}, T x_{n+1}\right)+d\left(f x_{n}, T x_{n}\right)\right]+\delta\left[d\left(f \mathrm{x}_{\mathrm{n}+1}, T x_{n}\right)+d\left(f x_{n}, T x_{n+1}\right)\right] \\
& =\alpha\left(\frac{d\left(T x_{n}, T x_{n+1}\right) d\left(T x_{n-1}, T x_{n}\right)}{\mathrm{d}\left(T x_{n}, T x_{n-1}\right)}\right)+\beta\left[\mathrm{d}\left(T x_{n}, T x_{n-1}\right)\right]+ \\
+ & \gamma\left[d\left(T x_{n}, T x_{n+1}\right)+d\left(T x_{n-1}, T x_{n}\right)\right]+\delta\left[d\left(T x_{n}, T x_{n}\right)+d\left(T x_{n-1}, T x_{n+1}\right)\right] \\
& =\alpha\left[d\left(T x_{n}, T x_{n+1}\right)\right]+\beta\left[\mathrm{d}\left(T x_{n}, T x_{n-1}\right)\right]+\gamma\left[d\left(T x_{n}, T x_{n+1}\right)+d\left(T x_{n-1}, T x_{n}\right)\right] \\
+ & \delta\left[d\left(T x_{n-1}, T x_{n+1}\right)\right] \\
& \leq \alpha\left[d\left(T x_{n}, T x_{n+1}\right)\right]+\beta\left[\mathrm{d}\left(T x_{n}, T x_{n-1}\right)\right]+\gamma\left[d\left(T x_{n}, T x_{n+1}\right)+d\left(T x_{n-1}, T x_{n}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\delta\left[d\left(T x_{n-1}, T x_{n}\right)+d\left(T x_{n}, T x_{n+1}\right)\right] \\
& =(\alpha+\delta+\gamma) d\left(T x_{n}, T x_{n+1}\right)+(\beta+\gamma+\delta) d\left(T x_{n-1}, T x_{n}\right)
\end{aligned}
$$

which implies that

$$
d\left(T x_{n+1}, T x_{n}\right) \leq\left(\frac{\beta+\gamma+\delta}{1-(\alpha+\gamma+\delta)}\right) \mathrm{d}\left(T x_{n}, T x_{n-1}\right)
$$

Continuing the same process up to ($\mathrm{n}-1$) times, we get

$$
d\left(T x_{n+1}, T x_{n}\right) \leq\left(\frac{\beta+\gamma+\delta}{1-(\alpha+\gamma+\delta)}\right)^{n} \mathrm{~d}\left(T x_{1}, T x_{0}\right)
$$

Let $k=\frac{\beta+\gamma+\delta}{1-(\alpha+\gamma+\delta)} \in[0,1)$, then from triangular inequality for $\mathrm{m} \geq \mathrm{n}$, we have

$$
\begin{aligned}
d\left(T x_{m}, T x_{n}\right) & \leq \mathrm{d}\left(T x_{m}, T x_{m-1}\right)+\mathrm{d}\left(T x_{m-1}, T x_{m-2}\right)+\ldots \ldots \ldots+d\left(T x_{n+1}, T x_{n}\right) \\
& \leq\left(k^{m-1}+k^{m-2}+\ldots \ldots \ldots+k^{n}\right) \mathrm{d}\left(T x_{1}, T x_{0}\right) \\
& \leq \frac{k^{n}}{1-k} \mathrm{~d}\left(T x_{1}, T x_{0}\right)
\end{aligned}
$$

as $\mathrm{m}, \mathrm{n} \rightarrow+\infty, d\left(T x_{m}, T x_{n}\right) \rightarrow 0$, which shows that the sequence $\left\{T x_{n}\right\}$ is a Cauchy sequence in X . So, by the completeness of X , there exists a point $u \in \mathrm{X}$ such that $\mathrm{Tx}_{\mathrm{n}} \rightarrow u$ as $\mathrm{n} \rightarrow+\infty$.
Again, by the continuity of T , we have

$$
\lim _{n \rightarrow+\infty} T\left(T x_{n}\right)=T\left(\lim _{n \rightarrow+\infty}\left(T x_{n}\right)\right)=T u
$$

But $f \mathrm{x}_{\mathrm{n}+1}=\mathrm{T} \mathrm{x}_{\mathrm{n}}$, then $f \mathrm{x}_{\mathrm{n}+1} \rightarrow u$ as $n \rightarrow+\infty$ and from the compatibility for T and f, we have

$$
\lim _{\mathrm{n} \rightarrow+\infty} \mathrm{d}\left(\mathrm{~T}\left(f \mathrm{x}_{\mathrm{n}}\right), f\left(\mathrm{Tx}_{\mathrm{n}}\right)\right)=0
$$

Further by triangular inequality, we have

$$
d(T u, f u)=d\left(T u, T\left(f \mathrm{x}_{\mathrm{n}}\right)\right)+d\left(T\left(f x_{n}\right), f\left(\mathrm{Tx}_{\mathrm{n}}\right)\right)+d\left(f\left(\mathrm{Tx}_{\mathrm{n}}\right), f u\right)
$$

On taking limit as $\mathrm{n} \rightarrow+\infty$ in both sides of the above equation and using the fact that T and f are continuous then, we get $\mathrm{d}(T u, f u)=0$. Thus $T u=f u$. Hence, u is a coincidence point of T and f in X .

Corollary 1. Let (X, d, \leq) be a complete partially ordered metric space. Suppose that the self-mappings f and T on X are continuous, T is a monotone f-nondecreasing, $\mathrm{T}(\mathrm{X}) \subseteq f(\mathrm{X})$ and satisfying the following condition

$$
d(T x, T y) \leq \alpha\left(\frac{d(f x, T x) d(f y, T y)}{d(f x, f y)}\right)+\gamma[d(f x, \mathrm{~T} x)+d(f y, \mathrm{~T} y)]
$$

for all x, y in X with $f(x) \neq f(y)$ are comparable and for some $\alpha, \gamma \in[0,1)$ with $0 \leq \alpha+2 \gamma<1$.
If there exists a point $x_{0} \in \mathrm{X}$ such that $f\left(x_{0}\right) \leq \mathrm{T}\left(x_{0}\right)$ and the mapping T and f are compatible, then T and f have a coincidence point in X .

Proof. Set $\beta=0, \delta=0$ in Theorem 1 .
Corollary 2. Let (X, d, \preceq) be a complete partially ordered metric space. Suppose that the self-mappings f and T on X are continuous, T is a monotone f-nondecreasing, $\mathrm{T}(\mathrm{X}) \subseteq f(\mathrm{X})$ and satisfying the following condition

$$
d(T x, T y) \leq \beta[d(f x, f y)]+\gamma[d(f x, \mathrm{~T} x)+d(f y, \mathrm{~T} y)]
$$

for all x, y in X with $f(x) \neq f(y)$ are comparable and for some $\beta, \gamma \in[0,1)$ with $0 \leq 2 \gamma+\beta<1$.
If there exists a point $x_{0} \in \mathrm{X}$ such that $f\left(x_{0}\right) \leq \mathrm{T}\left(x_{0}\right)$ and the mapping T and f are compatible, then T and f have a coincidence point in X .

Proof. The proof can be obtain by setting $\alpha=0, \delta=0$ in Theorem 1 .

Theorem 2. Let (X, d, \leq) be a complete partially ordered metric space. Suppose that f and T are self-mappings on X, T is a monotone f - nondecreasing, $\mathrm{T}(\mathrm{X}) \subseteq f(\mathrm{X})$ and satisfying

$$
\begin{align*}
d(T x, T y) \leq & \alpha\left(\frac{d(f x, T x) d(f y, T y)}{d(f x, f y)}\right)+\beta[d(f x, f y)]+\gamma[d(f x, \mathrm{~T} x)+d(f y, \mathrm{~T} y)] \\
& +\delta[d(f x, T y)+d(f y, T x)] \tag{2.2}
\end{align*}
$$

for all x, y in X with $f(x) \neq f(y)$ are comparable, where $\alpha, \beta, \gamma, \delta \in[0,1)$ with $0 \leq \alpha+\beta+2 \gamma+2 \delta<1$. If there exists a point $x_{0} \in \mathrm{X}$ such that $f\left(x_{0}\right) \leq \mathrm{T}\left(x_{0}\right)$ and $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow x$, then $x_{n} \leq x$ for all $n \in \mathbb{N}$.
If $f(X)$ is a complete subset of X, then T and f have a coincidence point in X. Further, if T and f are weakly compatible, then T and f have a common fixed point in X. moreover, the set of common fixed points of T and f is well ordered if and only if T and f have one and only one common fixed point in X.
Proof. Suppose $f(X)$ is a complete subset of X. As we know from the proof of Theorem 1 , the sequence $\left\{T x_{n}\right\}$ is a Cauchy sequence and hence $\left\{f x_{n}\right\}$ is also a Cauchy sequence in $(f(\mathrm{X}), d)$ as $f \mathrm{x}_{\mathrm{n}+1}=T x_{n}$ and $\mathrm{T}(\mathrm{X}) \subseteq f(\mathrm{X})$. Since $f(\mathrm{X})$ is complete then there exists some $f u \in f(\mathrm{X})$ such that

$$
\lim _{n \rightarrow+\infty} T\left(x_{n}\right)=\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=f u
$$

Also note that the sequence $\left\{T x_{n}\right\}$ and $\left\{f x_{n}\right\}$ are nondecreasing and from hypotheses, we have $T\left(x_{n}\right) \leq f(u)$ and $f\left(x_{n}\right) \leq f(u)$ for all $n \in \mathbb{N}$. But T is a monotone f - nondecreasing then, we get $T\left(x_{n}\right) \leq T(u)$ for all n. Letting $n \rightarrow+\infty$, we obtain that $f(u) \leq T(u)$.
Suppose that $f(u)<T(u)$ then define a sequence $\left\{u_{n}\right\}$ by $u_{0}=u$ and $f u_{n+1}=T u_{n}$ for all $n \in \mathbb{N}$. An argument similar to that in the proof of theorem 1 yields that $\left\{f u_{n}\right\}$ is a nondecreasing sequence and
$\lim _{\mathrm{n} \rightarrow+\infty} f\left(\mathrm{u}_{\mathrm{n}}\right)=\lim _{\mathrm{n} \rightarrow+\infty} \mathrm{T}\left(\mathrm{u}_{\mathrm{n}}\right)=f(v)$ for some $v \in X$. So from hypotheses, it is clear that $\sup f\left(u_{n}\right) \leq f(v)$ and $\sup \mathrm{T}\left(\mathrm{u}_{\mathrm{n}}\right) \leq f(v)$, for all $n \in \mathbb{N}$. Notice that

$$
f\left(x_{n}\right) \leq f(\mathrm{u}) \leq f\left(u_{1}\right) \leq \ldots \ldots \ldots \leq f\left(u_{n}\right) \leq \ldots \ldots \leq f(v)
$$

Case: 1 Suppose if there exists some $n_{0} \geq 1$. such that $f\left(x_{n_{0}}\right)=f\left(u_{n_{0}}\right)$ then, we have

$$
f\left(x_{n_{0}}\right)=f(u)=f\left(u_{n_{0}}\right)=f\left(u_{1}\right)=T(u)
$$

Hence, u is a coincidence point of T and f in X.
Case: 2 suppose that $f\left(x_{n_{0}}\right) \neq f\left(u_{n_{0}}\right)$ for all n then, from (2.2), we have

$$
\begin{aligned}
d\left(f x_{n+1}, f u_{n+1}\right)= & d\left(T \mathrm{x}_{\mathrm{n}}, T \mathrm{Tu}_{\mathrm{n}}\right) \\
& \leq \alpha\left(\frac{d\left(f x_{n}, T x_{n}\right) d\left(f u_{n}, T u_{n}\right)}{d\left(f x_{n}, f u_{n}\right)}\right) \\
& +\beta\left[d\left(f x_{n}, f u_{n}\right)\right]+\gamma\left[d\left(f x_{n}, T x_{n}\right)+d\left(f u_{n}, T u_{n}\right)\right] \\
+ & \delta\left[d\left(f x_{n}, T u_{n}\right)+d\left(f u_{n}, T x_{n}\right)\right]
\end{aligned}
$$

Taking limit as $n \rightarrow+\infty$ on both sides of the above inequality, we get

$$
\begin{aligned}
d(f u, f v) & \leq \beta[d(f u, f v)]+\delta[d(f u, f v)+d(f v, f u)] \\
& =(\beta+2 \delta) d(f u, f v) . \text { since }(\beta+2 \delta)<1
\end{aligned}
$$

Thus we have

$$
f(u)=f(v)=f\left(u_{1}\right)=T(u)
$$

Hence, we conclude that u is a coincidence point of T and f in X .
Now, suppose that T and f are weakly compatible. Let ω be a coincidence point then,

$$
T(\omega)=T(f(z))=f(T(z))=f(\omega), \text { since } \omega=T(z)=f(z), \text { for some } z \in \mathrm{X}
$$

Now by contraction condition, we have

$$
\begin{aligned}
d(T(z), T(\omega)) \leq & \alpha\left(\frac{d(f z, T z) d(f w, T w)}{d(f z, f w)}\right)+\beta[d(f z, f w)]+\gamma[d(f z, T z)+d(f w, T w)] \\
& +\delta[d(f z, T w)+d(f w, T z)] \\
& \leq(\beta+2 \delta) d(T(z), T(\omega))
\end{aligned}
$$

as $(\beta+2 \delta)<1$, then $d(T(z), T(\omega))=0$. Therefore, $T(z)=T(\omega)=f(\omega)=\omega$. Hence, ω is a common fixed point of T and f in X .

Now suppose that the set of common fixed points of T and f is well ordered, we have to show that the common fixed point of T and f is unique. Let u and v be two common fixed points of T and f such that $u \neq v$ then from (2.2), we have

$$
\begin{aligned}
d(u, v) \leq & \alpha\left(\frac{d(f u, T u) d(f v, T v)}{d(f u, f v)}\right)+\beta[d(f u, f v)]+\gamma[d(f u, T u)+d(f v, T v)] \\
& +\delta[d(f u, T v)+d(f v, T u)] \\
& \leq(\beta+2 \delta) d(u, v) \\
& <d(u, v), \text { since }(\beta+2 \delta)<1
\end{aligned}
$$

Which is a contradiction. Thus, $u=v$. Conversely, suppose T and f have only one common fixed point then the set of common fixed points of T and f being a singleton is well ordered. This completes the proof.

Corollary 3. Let (X, d, \preceq) be a complete partially ordered metric space. Suppose that f and T are self-mappings on X, T is a monotone f - nondecreasing, $\mathrm{T}(\mathrm{X}) \subseteq f(\mathrm{X})$ and satisfying

$$
d(T x, T y) \leq \alpha\left(\frac{d(f x, T x) d(f y, T y)}{d(f x, f y)}\right)+\gamma[d(f x, \mathrm{~T} x)+d(f y, \mathrm{~T} y)]
$$

for all x, y in X with $f(x) \neq f(y)$ are comparable, where $\alpha, \gamma \in[0,1)$ with $0 \leq \alpha+2 \gamma<1$. If there exists a point $x_{0} \in \mathrm{X}$ such that $f\left(x_{0}\right) \leq \mathrm{T}\left(x_{0}\right)$ and $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow x$, then $x_{n} \leq x$ for all $n \in \mathbb{N}$.

If $f(X)$ is a complete subset of X, then T and f have a coincidence point in X. Further, if T and f are weakly compatible, then T and f have a common fixed point in X. Moreover, the set of common fixed points of T and f is well ordered if and only if T and f have one and only one common fixed point in X.

Proof. Set $\beta=0, \delta=0$ in Theorem 2.
Corollary 4. Let (X, d, \preceq) be a complete partially ordered metric space. Suppose that the self-mappings f and T on X, T is a monotone f-nondecreasing, $\mathrm{T}(\mathrm{X}) \subseteq f(\mathrm{X})$ and satisfying

$$
d(T x, T y) \leq \beta[d(f x, f y)]+\gamma[d(f x, \mathrm{~T} x)+d(f y, \mathrm{~T} y)]
$$

for all x, y in X with $f(x) \neq f(y)$ are comparable, where $\beta, \gamma \in[0,1)$ with $0 \leq 2 \gamma+\beta<1$. If there exists a point $x_{0} \in \mathrm{X}$ such that $f\left(x_{0}\right) \leq \mathrm{T}\left(x_{0}\right)$ and $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow x$, then $x_{n} \leq x$ for all $n \in \mathbb{N}$.

If $f(X)$ is a complete subset of X, then T and f have a coincidence point in X. Further, if T and f are weakly compatible, then T and f have a common fixed point in X. Moreover, the set of common fixed points of T and f is well ordered if and only if T and f have one and only one common fixed point in X.

Proof. set $\alpha=0, \delta=0$ in Theorem 2.
Conclusion: In this paper, we prove a coincidence point and common fixed point results for compatible mappings in complete partially ordered metric space. Our results are generalizes and improve the results of Rao et al.[14] and chandok et al.[15].

References

[1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations untegrales, Fund. Math. 3 (1922), 133-181.
[2] B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math. 6 (1975), no. 12, 1455-1458.
[3] S.K. Chetterjee, Fixed point theorems, C.R. Acad. Bulgara Sci. 25 (1972), 727-730.
[4] M. Edelstein, On fixed points and periodic points under contraction mappings, J. Lond. Math. Soc. 37 (1962), 74-79.
[5] D.S. Jaggi, Some unique fixed point theorems, Indian J. Pure Appl. Math. 8, (1977) 223-230.
[6] R. Kannan, Some results on fixed points. II, Amer. Math. Monthly 76 (1969), 405-408.
[7] R. P. Agarwal,M. A. El-Gebeily and D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), no. 1, 109-116.
[8] M. Arshad, A. Azam and P. Vetro, Some common fixed point results in cone metric spaces, Fixed Point Theory Appl. 2009, Art. ID 493965, 11 pp.
[9] T.G. Bhaskar, V. Lakshmikantham, Fixed point theory in partially ordered metric spaces and applications, Nonlinear Anal. Theory Methods Appl. 65 (2006), 1379-1393.
[10] J. Harjani, B. L'opez and K. Sadarangani, A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Abstr. Appl. Anal. 2010, Art. ID 190701, 8 pp.
[11] S. Hong, Fixed points of multivalued operators in ordered metric spaces with applications, Nonlinear Anal. 72 (2010), no. 11, 3929-3942.
[12] J. J. Nieto, R. R. López: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equation, Acta Math. Sin. Engl. Ser. 23(12), 2205-2212 (2007).
[13] S. Chandok, Some common fixed point results for generalized weak contractive mappings in partially ordered metric spaces, Journal of Nonlinear Anal. Opt. 4 (2013), 45-52 .
[14] N. Seshagiri Rao, K. Kalyani and Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces, CUBO, A Mathematical Journal. Vol.22(2020), $\mathrm{N} \circ 02$, (203-214).
[15] S. Chandok , T. D. Narang and M. A. Taoudi, Fixed Point Theorem for Generalized Contractions Satisfying Rational Type Expressions in Partially Ordered Metric Spaces, Gulf Journal of Mathematics. Vol. 2, Issue 4 (2014), 87-93.
[16] S. Chandok, Some common fixed point results for rational type contraction mappings in partially ordered metric spaces, Math. Bohem. 138 (2013), no. 4, 407-413.
[17] X. Zhang, Fixed point theorems of multivalued monotone mappings in ordered metric spaces, Appl. Math. Lett. 23 (2010), no. 3, 235-240.

