$\boldsymbol{I}_{\boldsymbol{n}}$ - Mean Cordial Graphs

D.JaspinJeba ${ }^{1, * *}$, G.Sudhana ${ }^{2}$
${ }^{1}$ Research Scholar, Reg.No. $20123112092023,{ }^{2}$ Assistant Professor
${ }^{1,2}$ DepartmentofMathematics,NesamonyMemorialChristianCollege,Marthandam. Affiliated to ManonmaniamSundaranarUniversity,Tirunelveli-627 012,India.
${ }^{1}$ emijaspin@gmail.com
${ }^{2}$ sudhanaarun1985@gmail.com

Abstract

A graph labeling is an assignment of integers to the vertices or edges or both depending on certain conditions. A graph G with p vertices and q edges is said to admit I_{n} mean cordial labeling if the vertex labeling h from $V(G)$ to I_{n}, where $I_{n}=\{0, \pm 1, \pm 2, \ldots, \pm(n-1)\}$ induces the function h^{*} from $E(G)$ to I_{n} ash $h^{*}(x y)=$ $\left\lceil\frac{h(x)+h(y)}{2}\right]$ with the condition that $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in I_{n}$. A graph with I_{n} - mean cordial labeling is called an I_{n} - mean cordial graph. In this paper, we prove that path graphs, cycle graphs, complete graphs, wheel graphs and friendship graphs are I_{2} - mean cordial graphs. Further, we prove that path graphs, cycle graphs are I_{3} - mean cordial graphs.

Keywords: labeling,cordial labeling, mean cordial labeling.

1.Introduction

All graphs considered here are finite, simple, connected and undirected. A graph labeling is a function that carries the graph elements to a set of numbers. The labeling is called a vertex labeling(or an edge labeling) when the function's domain is a set of vertices(or edges). Cahit proposed the notion of cordial labeling in 1987 as a weaker version of graceful and harmonious labeling [2]. Several authors investigated the cordiality behaviour of various graphs. Some cordial labeling variations have been introduced such as prime cordial labeling, edge cordial labeling, product cordial labeling, integer cordial labeling, mean cordial labeling, k -cordial labeling and so on. The idea of mean cordial labeling was introduced by R. Ponraj, M. Sivakumar and M. Sundaram [5]. Let h be a function from $\mathrm{V}(\mathrm{G})$ to $\{0,1,2\}$. For each edge $x y$ of G, assign the label $\left\lceil\frac{h(x)+h(y)}{2}\right\rceil$. The function h is called mean cordial labeling of G if $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in I_{n}$, where $v_{h}(i), e_{h^{*}}(i)$ denote the number of vertices and edges labeled with i respectively. Motivated by this concept we introduce a new labeling called I_{n} - mean cordial labeling and we investigate I_{2}, I_{3} - mean cordiality of some standard graphs. In this section we provide a summary of definitions required for our investigation.
Definition 1.1. Let $G=\left((V(G), E(G))\right.$ be a simple graph and let $h: V(G) \rightarrow I_{n}$ be a function, where $I_{n}=\{0, \pm 1, \pm 2, \ldots, \pm(n-1)\}$. For each edge $x y$, assign the label $h^{*}(x y)=\left\lceil\frac{h(x)+h(y)}{2}\right\rceil$. The
function h is called I_{n} - mean cordial labeling if $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in I_{n}$. A graph with I_{n} - mean cordial labeling is called an I_{n} - mean cordial graph.
Definition 1.2. The wheel graph W_{n} is defined to be the join $K_{1}+C_{n}$. The vertex corresponding to K_{1} is known as apex and the vertices corresponding to the cycle C_{n} are known as rim vertices while the edges corresponding to the cycle are known as rim edges.
Definition 1.3. The friendship graph F_{n} is a graph which consists of n triangles with a common vertex.

2. Main Results

Theorem 2.1. The path graph P_{n} admits I_{2} - mean cordial labeling.
Proof.Let $G=P_{n}$. Let x_{i} be the vertices of G and let $E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\}$ be the edge set of G. Define $h: V(G) \rightarrow I_{2}$ as follows:
Case(i): $n \equiv 0(\bmod 3)$.
$h\left(x_{i}\right)=\left\{\begin{array}{cc}1 \text { if } 1 \leq i \leq \frac{n}{3} \\ -1 & \text { if } \frac{n}{3}+1 \leq i \leq \frac{2 n}{3} \\ 0 & \text { if } \frac{2 n}{3}+1 \leq i \leq n\end{array}\right.$
In this case, h will induce the map $h^{*}: E(G) \rightarrow I_{2}$ and we get $v_{h}(i)=\frac{n}{3}$ for all $i \in I_{2}$;
$e_{h^{*}}(0)=e_{h^{*}}(-1)=\frac{n}{3}$ and $e_{h^{*}}(1)=\frac{n}{3}-1$.
Case(ii): $n \equiv 1(\bmod 3)$.
$h\left(x_{i}\right)=\left\{\begin{array}{c}1 \text { if } 1 \leq i \leq\left\lceil\frac{n}{3}\right\rceil \\ -1 \text { if }\left\lceil\frac{n}{3}\right\rceil+1 \leq i \leq\left\lceil\frac{2 n}{3}\right\rceil \\ 0 \text { if }\left\lceil\frac{2 n}{3}\right\rceil+1 \leq i \leq n\end{array}\right.$
In this case, we have $v_{h}(1)=\left\lceil\frac{n}{3}\right\rceil, v_{h}(0)=v_{h}(-1)=\left\lfloor\frac{n}{3}\right\rfloor ; e_{h^{*}}(i)=\frac{n-1}{3}$ for all $i \in I_{2}$.
Case(iii): $n \equiv 2(\bmod 3)$.
Here, label the vertices of G as in case(ii). Then we have $v_{h}(1)=v_{h}(-1)=\left\lceil\frac{n}{3}\right\rceil$ and $v_{h}(0)=\left\lfloor\frac{n}{3}\right\rfloor ; e_{h^{*}}(0)=e_{h^{*}}(1)=\left\lfloor\frac{n-1}{3}\right\rfloor$ ande $_{h^{*}}(-1)=\left\lceil\frac{n-1}{3}\right\rceil$.

Thus in each case, we have $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in$ I_{2}.Hence, P_{n} is an I_{2} - mean cordial graph.
Theorem 2.2. The cycle graph C_{n} admits I_{2}-mean cordial labeling.
Proof. Let G be the cycle graph C_{n}. Let $x_{i}(1 \leq i \leq n)$ be the vertices of G and let $\quad E(G)=$ $\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{n} x_{1}\right\}$ be the edge set of G. Now, label the vertices of G as in Theorem 2.1. Then the labeling h will induce the map $h^{*}: E(G) \rightarrow I_{2}$ and we get $v_{h}(i)=e_{h^{*}}(i)=\frac{n}{3}(i \in$ I_{2})for $n \equiv 0(\bmod 3) ; \quad v_{h}(1)=e_{h^{*}}(1)=\left\lceil\frac{n}{3}\right\rceil$ and $v_{h}(0)=v_{h}(-1)=e_{h^{*}}(0)=e_{h^{*}}(-1)=\left\lfloor\frac{n}{3}\right\rfloor$ for $n \equiv 1(\bmod 3)$. Alsov$v_{h}(1)=v_{h}(-1)=e_{h^{*}}(1)=e_{h^{*}}(-1)=\left\lceil\frac{n}{3}\right\rceil$ and $v_{h}(0)=e_{h^{*}}(0)=\left\lfloor\frac{n}{3}\right\rfloor$ for $n \equiv 2(\bmod 3)$.

I_{n} - Mean Cordial Graphs

Thus in each case, we have $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in$ I_{2}. Hence, C_{n} is an I_{2} - mean cordial graph.
Theorem 2.3. The complete graph K_{n} admits I_{2} - mean cordial labeling.
Proof.Let $G=K_{n}$. Let $x_{i}(1 \leq i \leq n)$ be the vertices of G. Define $h: V(G) \rightarrow I_{2}$ as follows:
Case(i): $n \equiv 0(\bmod 3)$.
In this case, label the vertices of G in any order in such a way that $v_{h}(i)=\frac{n}{3}$ for all $i \in I_{2}$. Then we have $e_{h^{*}}(i)=\frac{n(n-1)}{6}$ for all $i \in I_{2}$.
Case(ii): $n \equiv 1(\bmod 3)$.
Here, label the vertices of G in any order with $v_{h}(0)=\left\lceil\frac{n}{3}\right\rceil, v_{h}(1)=v_{h}(-1)=\left\lfloor\frac{n}{3}\right\rfloor$.Then the number of edges labeled with $i \in I_{2}$ are $e_{h^{*}}(i)=\frac{n(n-1)}{6}$.
Case(iii): $n \equiv 2(\bmod 3)$.
Here, label the vertices of G in any order with $v_{h}(0)=\left\lfloor\frac{n}{3}\right\rfloor, v_{h}(1)=v_{h}(-1)=\left\lceil\frac{n}{3}\right\rceil$. Then the number of edges labeled with $i \in I_{2}$ are $e_{h^{*}}(1)=e_{h^{*}}(-1)=\left\lfloor\frac{n(n-1)}{6}\right\rceil, \quad e_{h^{*}}(0)=\left\lceil\frac{n(n-1)}{6}\right\rceil$.

Thus in each case, we have $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in$ I_{2}.Hence, K_{n} is an I_{2}-mean cordial graph.
Theorem 2.4. The star graph $K_{1, n}$ admits I_{2} - mean cordial labeling.
Proof. Let G be the star graph $K_{1, n}$.Let $x, x_{i}(1 \leq i \leq n)$ be the vertices of G. Then $E(G)=\left\{x x_{i}\right.$: $1 \leq i \leq n\}$ is the edge set of G. Now, label the vertex x by 0 and the vertices $x_{i}(1 \leq i \leq n)$ as follows:
Case(i): $n \equiv 0(\bmod 3)$
In this case, label the vertices $x_{i}(1 \leq i \leq n)$ of G in any order in such a way that $v_{h}(0)=\frac{n}{3}+1$, $v_{h}(1)=v_{h}(-1)=\frac{n}{3}$ for all $i \in I_{2}$. Then the number of edges labeled with $i \in I_{2} \operatorname{are} e_{h^{*}}(i)=\frac{n}{3}$.
Case(ii): $n \equiv 1(\bmod 3)$
Here, label the vertices $x_{i}(1 \leq i \leq n)$ of G in any order with $v_{h}(0)=v_{h}(1)=\left\lceil\frac{n}{3}\right\rceil, v_{h}(-1)=\left\lfloor\frac{n}{3}\right\rfloor$. Then we have $e_{h^{*}}(1)=\left\lceil\frac{n}{3}\right\rceil, e_{h^{*}}(0)=e_{h^{*}}(-1)=\left\lfloor\frac{n}{3}\right\rfloor$.
Case(iii): $n \equiv 2$ (mod 3)
In this case, label the vertices of G in any order with $v_{h}(i)=\left\lceil\frac{n}{3}\right\rceil$ for all $i \in I_{2}$. Then the number of edges labeled with $i \in I_{2}$ are $e_{h^{*}}(1)=e_{h^{*}}(-1)=\left\lceil\frac{n}{3}\right\rceil$, $e_{h^{*}}(0)=\left\lfloor\frac{n}{3}\right\rfloor$.

Thus in each case, we have $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in I_{2}$.Hence, $K_{l, n}$ is an I_{2} - mean cordial graph.
Theorem 2.5. The wheel graph W_{n} admits I_{2} - mean cordial labeling.
Proof.Let $G=W_{n}$. Let x be the apex vertex and let $x_{i}(i \leq i \leq n)$ be the rim vertices of G and let $E(G)=\left\{x_{i}: 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{n} x_{1}\right\}$ be the edge set of G. Define $h: V(G) \rightarrow I_{2}$ as follows:
Case(i): $n \equiv 0(\bmod 3)$
In this case, label the apex vertex by 0 and the rim vertices as in Theorem 2.1. Then we have $v_{h}(0)=\frac{n}{3}+1, v_{h}(1)=v_{h}(-1)=\frac{n}{3} ; e_{h^{*}}(i)=\frac{2 n}{3}$ for all $i \in I_{2}$.

Case(ii): $n \equiv 1(\bmod 3)$
$h(x)=0, h\left(x_{n}\right)=-l$ and $h\left(x_{i}\right)=\left\{\begin{array}{c}1 \quad \text { if } 1 \leq i \leq\left\lceil\frac{n}{3}\right\rceil \\ -1 \text { if }\left\lceil\frac{n}{3}\right\rceil+1 \leq i \leq\left\lfloor\frac{2 n}{3}\right\rceil . \\ 0 \text { if }\left\lceil\frac{2 n}{3}\right\rceil \leq i \leq n-1\end{array}\right.$.
Here, we have $v_{h}(0)=v_{h}(1)=\left\lceil\frac{n}{3}\right\rceil, v_{h}(-1)=\left\lfloor\frac{n}{3}\right\rceil ; e_{h^{*}}(0)=e_{h^{*}}(1)=\left\lceil\frac{2 n}{3}\right\rceil$ and $e_{h^{*}(-1)}=\left\lfloor\frac{2 n}{3}\right\rfloor$.
Case(iii): $n \equiv 2(\bmod 3)$
Here, label the vertices of G as in case(ii). Then, we have $v_{h}(0)=v_{h}(1)=\left\lceil\frac{n}{3}\right\rceil$, $v_{h}(-1)=\left\lceil\frac{n}{3}\right\rceil ; e_{h^{*}}(0)=e_{h^{*}}(1)=\left\lfloor\frac{2 n}{3}\right\rceil$ and $e_{h^{*}}(-1)=\left\lceil\frac{2 n}{3}\right\rceil$.

Thus in each case, we have $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}(i)}-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in I_{2}$.Hence, W_{n} is an I_{2} - mean cordial graph.
Theorem 2.6. The friendship graph F_{n} admits I_{2} - mean cordial labeling.
Proof. Let G be the friendship graph F_{n}. Let $x, x_{i}, y_{i}(i \leq i \leq n)$ be the vertices of G and let $E(G)=\left\{x x_{i}, x y_{i}, x_{i} y_{i}: 1 \leq i \leq n\right\}$ be the edge set of G. Define $h: V(G) \rightarrow I_{2}$ as follows:
Case(i): $n \equiv 0(\bmod 3)$
$h(x)=0, h\left(x_{i}\right)=\left\{\begin{array}{c}0 \text { if } 1 \leq i \leq \frac{2 n}{3} \\ 1 \text { if } \frac{2 n}{3}+1 \leq i \leq n\end{array}\right.$ and $h\left(y_{i}\right)=\left\{\begin{array}{c}1 \text { if } 1 \leq i \leq \frac{n}{3} \\ -1 \text { if } \frac{n}{3}+1 \leq i \leq n\end{array}\right.$
In this case, we have $v_{h}(1)=v_{h}(-1)=\left\lfloor\frac{2 n+1}{3}\right\rfloor$ and $v_{h}(0)=\left\lceil\frac{2 n+1}{3}\right\rceil$.
Case(ii): $n \equiv 1(\bmod 3)$

$$
h(x)=0, \quad h\left(x_{i}\right)=\left\{\begin{aligned}
0 & \text { if } 1 \leq i \leq \frac{2(n-1)}{3} \\
1 & \text { if } \frac{2 n+1}{3} \leq i \leq n-1
\end{aligned}\right.
$$

$h\left(y_{i}\right)=\left\{\begin{array}{c}1 \quad \text { if } 1 \leq i \leq \frac{n-1}{3} \\ -1 \quad \text { if } \frac{n+2}{3} \leq i \leq n-1\end{array}, \quad h\left(x_{n}\right)=1\right.$ and $h\left(y_{n}\right)=-1$.
Here, we have $v_{h}(i)=\frac{2 n+1}{3}$ for all $i \in I_{2}$.
Case(iii): $n \equiv 2(\bmod 3)$
Here, label the vertices of G as in case(i) for $1 \leq i \leq n-2$ and
$h\left(x_{n-1}\right)=h\left(x_{n}\right)=1, h\left(y_{n-1}\right)=h\left(y_{n}\right)=-1$. In this case, we have $v_{h}(0)=\left\lfloor\frac{2 n+1}{3}\right\rfloor$ and $v_{h}(1)=v_{h}(-1)=\left\lceil\frac{2 n+1}{3}\right\rceil$.

Also in each case, we get $e_{h^{*}}(i)=n$ for all $i \in I_{2}$. Thus in all the cases, we have $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in I_{2}$. Hence, F_{n} is an I_{2} - mean cordial graph.

Theorem 2.7. The path graph P_{n} admits I_{3}-mean cordial labeling.
Proof.Let $G=P_{n}$. Let x_{i} be the vertices of G and let $E(G)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\}$ be the edge set of G. Define $h: V(G) \rightarrow I_{2}$ as follows:
Case(i): $n \equiv 0,1$ or $4(\bmod 5)$.
$h\left(x_{i}\right)=\left\{\begin{array}{c}1 \text { if } 1 \leq i \leq\left\lceil\frac{n}{5}\right\rceil \\ 2 \text { if }\left\lceil\frac{n}{5}\right\rceil+1 \leq i \leq\left\lceil\frac{2 n}{5}\right\rceil \\ -2 \text { if }\left\lceil\frac{2 n}{5}\right\rceil+1 \leq i \leq\left\lceil\frac{3 n}{5}\right\rceil \\ -1 \text { if }\left\lceil\frac{3 n}{5}\right\rceil+1 \leq i \leq\left\lceil\frac{4 n}{5}\right\rceil \\ 0 \text { if }\left\lceil\frac{4 n}{5}\right\rceil+1 \leq i \leq n\end{array}\right.$
In this case, the number of vertices and edges labeled with $i \in I_{3}$ are as follows:
$v_{h}(i)=\frac{n}{5}\left(i \in I_{3}\right), e_{h^{*}}(1)=\left\lfloor\frac{n-1}{5}\right\rceil, e_{h^{*}}(i)=\left\lceil\frac{n-1}{5}\right\rceil(i=0,-1, \pm 2)$ for $n \equiv 0(\bmod 5)$; $v_{h}(1)=\left\lceil\frac{n}{5}\right\rceil, v_{h}(i)=\left\lfloor\frac{n}{5}\right\rceil(i=0,-1, \pm 2), e_{h^{*}}(i)=\frac{n-1}{5}\left(i \in I_{3}\right)$ for $n \equiv 1(\bmod 5)$;

$$
v_{h}(i)=\left\lceil\frac{n}{5}\right\rceil(i= \pm 1, \pm 2), \quad v_{h}(0)=\left\lfloor\frac{n}{5}\right\rfloor, e_{h^{*}}(i)=\left\lceil\frac{n-1}{5}\right\rceil(i=-1, \pm 2)
$$

$e_{h^{*}}(i)=\left\lfloor\frac{n-1}{5}\right\rfloor(i=0,1)$ for $n \equiv 4(\bmod 5)$.
Case(ii): $n \equiv 2(\bmod 5)$.

$$
h\left(x_{i}\right)=\left\{\begin{array}{c}
1 \text { if } 1 \leq i \leq\left\lceil\frac{n}{5}\right\rceil \\
2 \text { if }\left\lceil\frac{n}{5}\right\rceil+1 \leq i \leq\left\lceil\frac{2 n}{5}\right\rceil+1 \\
-2 \text { if }\left\lceil\frac{2 n}{5}\right\rceil+2 \leq i \leq\left\lceil\frac{3 n}{5}\right\rceil \\
-1 \text { if }\left\lceil\frac{3 n}{5}\right\rceil+1 \leq i \leq\left\lceil\frac{4 n}{5}\right\rceil \\
0 \text { if }\left\lceil\frac{4 n}{5}\right\rceil+1 \leq i \leq n
\end{array}\right.
$$

In this case, we have $v_{h}(i)=\left\lceil\frac{n}{5}\right\rceil(i=1,2), v_{h}(i)=\left\lfloor\frac{n}{5}\right\rfloor(i=0,-1,-2)$,

$$
e_{h^{*}}(2)=\left\lceil\frac{n-1}{5}\right\rceil, e_{h^{*}}(i)=\left\lceil\frac{n-1}{5}\right\rceil(i=0, \pm 1,-2) .
$$

Case(iii): $n \equiv 3(\bmod 5)$.
$h\left(x_{i}\right)=\left\{\begin{array}{c}1 \quad \text { if } 1 \leq i \leq\left\lceil\frac{n}{5}\right\rceil \\ 2 \text { if }\left\lceil\frac{n}{5}\right\rceil+1 \leq i \leq\left\lceil\frac{2 n}{5}\right\rceil \\ -2 \text { if }\left\lceil\frac{2 n}{5}\right\rceil+1 \leq i \leq\left\lceil\frac{3 n}{5}\right\rceil+1 \\ -1 \text { if }\left\lceil\frac{3 n}{5}\right\rceil+2 \leq i \leq\left\lceil\frac{4 n}{5}\right\rceil \\ 0 \text { if }\left\lceil\frac{4 n}{5}\right\rceil+1 \leq i \leq n\end{array}\right.$
In this case, we have

$$
\begin{aligned}
v_{h}(i)=\left\lceil\frac{n}{5}\right\rceil & (i=1,2,-2), v_{h}(i)=\left\lfloor\frac{n}{5}\right\rfloor(i=0,2), e_{h^{*}}(i)=\left\lceil\frac{n-1}{5}\right\rceil(i= \pm 2), e_{h^{*}}(i) \\
& =\left\lfloor\frac{n-1}{5}\right\rfloor(i=0, \pm 1)
\end{aligned}
$$

Thus in each case, we have $\left|v_{h}(i)-v_{h}(j)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in I_{2}$.Hence, P_{n} is an I_{3}-mean cordial graph.
Theorem 2.8. The cycle graph C_{n} admits I_{3}-mean cordial labeling.
Proof. Let G be the cycle graph C_{n}. Let $x_{i}(1 \leq i \leq n)$ be the vertices of G and let $E(G)=$ $\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{n} x_{1}\right\}$ be the edge set of G. Now, label the vertices of G as in Theorem 2.7. Then number of vertices and edges labeled with $i \in I_{3}$ are as follows:
$v_{h}(i)=e_{h^{*}}(i)=\frac{n}{5}$ for all $i \in I_{3}, n \equiv 0(\bmod 5)$
$v_{h}(i)=e_{h^{*}}(i)=\left\{\begin{array}{ll}{\left[\frac{n}{5}\right\rfloor i f i} & =1 \\ \left\lfloor\frac{n}{5}\right\rfloor i f i & =0,-1, \pm 2\end{array}\right.$ for $n \equiv 1($ mod 5$)$
$v_{h}(i)=e_{h^{*}}(i)=\left\{\begin{array}{ll}\left\lceil\frac{n}{5}\right\rfloor \text { ifi } & =1,2 \\ \left\lfloor\frac{n}{5}\right\rfloor i f i & =0,-1,-2\end{array}\right.$ for $n \equiv 2(\bmod 5)$
$v_{h}(i)=e_{h^{*}}(i)=\left\{\begin{array}{ll}{\left[\frac{n}{5}\right\rfloor i f i} & =1, \pm 2 \\ \left\lfloor\frac{n}{5}\right\rfloor i f i & =0,-1\end{array} \quad\right.$ for $n \equiv 3(\bmod 5)$
$v_{h}(i)=e_{h^{*}}(i)=\left\{\begin{array}{ll}{\left[\frac{n}{5}\right\rfloor \text { ifi }} & = \pm 1, \pm 2 \\ \left\lfloor\frac{n}{5}\right\rfloor i f i & =0\end{array} \quad\right.$ for $n \equiv 4\left(\begin{array}{ll}\text { mod } & 5\end{array}\right)$
Thus in each case, we have $\left|v_{h}(i)-v_{h}\left(j^{j}\right)\right| \leq 1$ and $\left|e_{h^{*}}(i)-e_{h^{*}}(j)\right| \leq 1$ for all $i, j \in I_{2}$. Hence, C_{n} is an I_{3}-mean cordial graph.
Theorem 2.9. The star graph $K_{1, n}$ admits I_{3} - mean cordial labelling if and only if $n \leq 4$.
Proof. Let G be the star graph $K_{l, n}$. Let $x, x_{i}(1 \leq i \leq n)$ be the vertices of G . Then $E(G)=$ $\left\{x x_{i}: 1 \leq i \leq n\right\}$ is the edge set of G .
If $n \leq 2$, the result is true by Theorem 2.7. If $n=3$ or 4 , label $h(x)=1, h\left(x_{1}\right)=0, h\left(x_{2}\right)=$ $-1, h\left(x_{3}\right)=2, h\left(x_{4}\right)=-2$. Here, G satisfies the vertex and edge conditions.

Suppose that G admits I_{3} - mean cordial labeling h for all $n>4$. Then $h(x) \neq 0$; otherwise $e_{h^{*}}(2)=e_{h^{*}}(-2)=0$. Now, if $h(x)=1, e_{h^{*}}(-2)=0$; if $h(x)=-1, e_{h^{*}}(2)=0$; if $h(x)=2, e_{h^{*}}(-1)=0$; if $h(x)=-2, e_{h^{*}}(1)=0$.

I_{n} - Mean Cordial Graphs

Thus in each case, we have $\left|e_{h^{*}(i)}-e_{h^{*}}(j)\right|>1$ for some $i, j \in I_{3}$. Hence, $K_{l, n}$ is an I_{3}-mean cordial graph.

References

[1] Albert William, IndraRajasingh and S.Roy, Mean Cordial Labeling of Certain Graphs, Journal of Computer and Mathematical Sciences, Vol. 4 (4), 274-281 (2013).
[2] I. Cahit, Cordial graphs, A weaker version of graceful and harmonious graphs, ArsCombinatoria, Vol 23, pp. 201-207, (1987).
[3] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic J. Combin.,(2019).
[4] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, (1972).
[5] R. Ponraj, M. Sivakumar, M. Sundaram, Mean Cordial Labeling of Graphs, Open Journal of Discrete Mathematics, 2012, 2, 145-148 .
[6] R.Ponraj, S.Sathish Narayanan, A.M.S.Ramasamy, Total Mean Cordial Labeling of Graphs, International J.Math. Combin.Vol.4(2014), 56-68.

