Turkish Online Journal of Qualitative Inquiry (TOJQI) Volume 12, Issue 6, June 2021: 714 - 718

Extension of the δ - Function of \mathbb{R}^n

M. Melna Frincy^a, d J.R.V. Edward^b

Dept. of Mathematics, Ponjesly College of Engineering, Nagercoil – 629 003, Tamil Nadu, India
 Dept. of Mathematics, Scott Christian College, Nagercoil – 629 003, Tamil Nadu, India

Corresponding author: melnabensigar84@gmail.com,jrvedward@gmail.com

Abstract

The delta function plays a vital role in many areas of mathematics. Our objective in this paper is to extend it to higher dimensional spaces and to study some of its fundamental properties.

1. The δ - function

1.1 Definition:

Let \mathbb{R} be the set of real numbers and \mathbb{C} be the set of complex numbers.

The δ - function on a subset E of $\mathbb R$ or $\mathbb C$ is the function

 $\delta: E \rightarrow \{0, 1\}$ defined by

$$\delta(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \neq 0 \end{cases} \tag{1}$$

The first thing we observe is that δ is a mininorm on $X = \mathbb{R}$ or \mathbb{C} . Before writing a proof for this simple observation, let us define a mininorm.

1.2 Definition

Let X be a vector space over $K = \mathbb{R}$ or \mathbb{C} . A mininorm on X is a function $w = X \to \mathbb{R}$ which satisfy the following conditions:

(a)
$$w(x) \ge 0$$
 for all $x \in X$

and
$$w(x) = 0$$
 if and only if $x = 0$ (3)

(b)
$$w(\alpha x) = w(x)$$
 for all $x \in X$ and $\alpha \in K$, $0 \neq \alpha \in K$ (4)

(c)
$$w(x + y) \le w(x) + w(y)$$
 for all $x, y \in X$ (5)

A vector space X with a mininorm w defined on it is called a mininormed space and is, in general, denoted by (X, w).

Note: Every mininorm w induces a metric d_w defined by

$$d_w(x, y) = w(x - y) \text{ for all } x, y \in X$$
(6)

1.3 Proposition

Let $X = \mathbb{R}$ or \mathbb{C} . Then δ is a mininorm on X.

Proof:

Condition (a) for a mininorm is obvious from the definition of δ .

To verify (b) take $x \in X$ and $\alpha \in K$ with $\alpha \neq 0$.

If
$$x = 0$$
, then $\alpha x = 0$ so that $\delta(x) = \delta(\alpha x) = 0$.

If
$$x \neq 0$$
, then $\alpha x \neq 0$ so that $\delta(x) = \delta(\alpha x) = 1$.

Now, we prove (c).

Suppose x + y = 0. Then (c) is obvious.

Now suppose $x + y \neq 0$. Then, at least one of x and y is non zero. Without loss of generality, we may assume that $x \neq 0$. Then, $\delta(x) = 1$

So,
$$\delta(x) + \delta(y) \ge 1$$
. But $\delta(x + y) = 1$.

Hence
$$\delta(x + y) \leq \delta(x) + \delta(y)$$
.

1.4 Remark:

It can be easily checked that whenever w is a mininorm on \mathbb{R} or \mathbb{C} , rw is also a mininorm on \mathbb{R} or \mathbb{C} where r is any real number $r \neq 0$. Hence, for any real number $r \neq 0$, $r\delta$ is also a mininorm on $X \in \mathbb{R}$ or \mathbb{C} . $r\delta$ is the function given by

$$r\delta(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \neq 0 \end{cases}$$
 (7)

we may denote $r\delta$ by δ_r .

2. Extension of the δ - Function of \mathbb{R}^n

2.1 Definition:

Let
$$X = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$$

Define $\delta(x)$ by

$$\delta(x) = (\delta(x_1), \delta(x_2), ..., \delta(x_n)) \qquad . \tag{8}$$

Let us now define an order relation on \mathbb{R}^n .

2.2 Definition:

Let $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$ We say that $x \le y$ if and only if $x_i \le y_i$ for all i = 1, 2, 3, ..., n. It is clear that \le is a partial order relation on \mathbb{R}^n .

As an illustration, $(2,0,-3) \le (5,1,0)in \mathbb{R}^3$.

But the vectors (2,0,-3) and (5,1,0) are not comparable with respect to this order. Thus, the law of trichotomy does not hold in \mathbb{R}^n with respect to this order for n > 1.

It is now interesting to note that most of the properties of δ on \mathbb{R} hold for the extended δ on \mathbb{R}^n .

2.3 Proposition: δ in \mathbb{R}^n satisfies the following:

- (a) $\delta(x) \ge 0$ for all $x \in \mathbb{R}^n$ and $\delta(x) = 0$ if and only if x = 0.
- (b) $\delta(rx) = \delta(x)$ for all $x \in \mathbb{R}^n$ and for all $0 \neq r \in \mathbb{R}$.
- (c) $\delta(x + y) \le \delta(x) + \delta(y)$ for all $x, y \in \mathbb{R}^n$.

Proof:

Let
$$X = (x_1, x_2, ..., x_n)$$
 and $Y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$

Then, clearly $\delta(x) = (\delta(x_1), \delta(x_2), ..., \delta(x_n)) \ge 0$.

since $\delta(x_i) \ge 0$ for all i.

And $\delta(x) = 0$ if and only if $\delta(x_i) = 0$ for all i.

if and only if $x_i = 0$ for all i if and only if x = 0.

For $r \neq 0$, consider

$$\delta(rx) = (\delta rx_1, rx_2, ..., rx_n)$$

$$\delta(x) = (\delta(rx_1), \delta(rx_2), ..., \delta(rx_n))$$

$$\delta(x) = (\delta(x_1), \delta(x_2), ..., \delta(x_n)) = \delta(x)$$

Further,

$$\delta(x+y) = \delta(x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

$$= (\delta(x_1 + y_1), \delta(x_2 + y_2), ..., \delta(x_n + y_n))$$
(9)

Now, $\delta(x_i + y_i) \le \delta(x_i) + \delta(y_i)$ for all i.

So, (9) gives

$$\delta(x+y) = (\delta(x_1) + \delta(y_1)), (\delta(x_2) + \delta(y_2), \dots, (\delta(x_n) + \delta(n))),$$
$$= (\delta(x_1), \delta(x_2), \dots \delta(x_n)) + (\delta(y), \delta(y_2), \dots, \delta(y_n))$$

For an $X = (x_1, x_2, ..., x_n)$ in \mathbb{R}^n , its norm ||x|| is defined by

$$||x|| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}.$$
 (10)

$$x = (x_1, x_2, ..., x_n), \text{ put } |x| = (|x_1|, |x_2|, ..., |x_n|).$$
 (11)

Also, for
$$r \in \mathbb{R}^n$$
, put $\bar{r} = (r, r, ..., r) \in \mathbb{R}^n$. (12)

For example, $\bar{1} = (1, 1, ..., 1)$.

Now we have the result:

2.4 Proposition

Let $x \in \mathbb{R}^n$.

- (a) If $x \ge 1$, then $||x|| \ge ||\delta(x)||$
- (b) If $|x| \le 1$, then $||x|| \le ||\delta(x)||$.

Proof:

Suppose $x \ge 1$. That is, $x_i \ge 1$ for all i.

So,
$$x_i^2 \ge 1^2 = \delta(x_i)^2$$
 for all *i*.

Hence,
$$x_1^2 + x_2^2 + \dots, x_n^2 \ge \delta(x_1)^2 + \delta(x_2)^2 + \dots + \delta(x_n)^2$$
,

which implies

$$||x|| \ge ||\delta(x)||$$

Now, if $|x| \le 1$, then $|x_i| \le 1$, for all i.

so that
$$x_i^2 \le 1^2 = \delta (x_i)^2$$

Hence we get, $||x|| \le ||\delta(x)||$

Note:

It is not true that $x \le 1$ implies $||x|| \le ||\delta(x)||$

For example, let $X = (-2, 0, 0)in \mathbb{R}^3$

Then $x \le 1$.

$$\delta(x) = (1, 0, 0) \text{ and } ||\delta(x)|| = 1.$$

But $||x|| = 2 \ge ||\delta(x)||$.

2.5 Definition:

For i = 1, 2, ..., n, e_i is the vector defined by

 $e_i = (0,0,...,1,0,...,0)$, with 1 occurs in the i^{th} place and all other co ordinators are 0.

Remark:

$$\delta(e_i) = e_i$$

More generally, for $r \neq 0$,

$$\delta(re_i) = \delta(0,0,...,r,0,0,...,0)$$

$$= (0,0,...,\delta(r),0,0,...,0)$$

$$= (0,0,...,1,0,0,...,0) = e_i$$

References

- [1] Justesan and Hoholdt A course in Error Correcting codes. Hindustan Book Agency, New Delhi, 2004.
- [2] E. Kreyszig Introductory Functional Analysis with Applications. John Wiley & Sons, New York, 1978.
- [3] B.V. Limaye Functional Analysis. New Age International Publishers, New Delhi. 1996.
- [4] G.F. Simmons Introduction to Topology and Modern Analysis. Mc Graw Hill, Tokyo, 1963.