M. Melna Frincy, J.R.V. Edward

Turkish Online Journal of Qualitative Inquiry (TOJQI) Volume 12, Issue 6, June 2021: 714 - 718

Extension of the - Function to An

M. Melna Frincy ^{a*}, J.R.V. Edward ^b

^{a*} 1. Dept. of Mathematics, Ponjesly College of Engineering, Nagercoil – 629 003, Tamil Nadu,

India

^b 2. Dept. of Mathematics Scott Christian College, Nagercoil – 629 003, Tamil Nadu, India

*Corresponding author: melnabensigar84@gmail.com, jrvedward@gmail.com

Abstract

The delta function plays a vital role in many areas of mathematics. Our objective in this paper is to extend it to higher dimensional spaces and to study some of its fundamental properties.

Keywords: Identity dialogue, islamophobia, secularism

The □- function

1.1 Definition:

Let \mathbb{R} be the set of real numbers and \mathbb{C} be the set of complex numbers.

The \Box - function on a subset E of \mathbb{R} or \mathbb{C} is the function \mathbb{P} : E \mathbb{P} {0, 1} defined by

$$\delta(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x \neq 0. \end{cases}$$
(1)

The first observation we make is that \Box is a mininorm on $X = \mathbb{R}$ or \mathbb{C} . Let us define a mininorm before developing a proof for this basic observation.

1.2 Definition

Let X ebe ea vector espace eover $eK = e\mathbb{R}$ or $e\mathbb{C}$. A mininorm on eX eis a function $w = eX \mathbb{P} \mathbb{R}$ which satisfy the following conditions:

(a)
$$w(x) \ge 0$$
 for all $x \in X$ (2)

and w(x) = 0 if and only if x = 0 (3)

(b)
$$w(\alpha x) = w(x)$$
 for all $x \in X$ and $\alpha \in \mathbf{K}$ $0 \neq \alpha \in \mathbf{K}$ (4)

(c)
$$w(x+y) \le w(x) + w(y)$$
 for all $x, y \in X$ (5)

A vector space X with a mininorm w defined on it eis ecalled a mininormed space eand is, in general, edenoted eby (eX, w).

Note: Every mininorm w induces a metric dw defined by

$$d_w(x, y) = w(x - y)$$
 for all $x, y \in X$. (6)

1.3 Proposition

Let $X = \Box$ or \Box . Then δ is a mininorm on X.

Proof:

Condition (a) for a mininorm is obvious from the definition of .

To verify (b)
$$x \in X$$
 take and $\alpha \in \mathbf{K}$ with $\alpha \neq 0$

If x = 0, then $\alpha x = 0$ so that $\delta(x) = \delta(\alpha x) = 0$.

If
$$x \neq 0$$
, then $\alpha x \neq 0$ so that $\delta(x) = \delta(\alpha x) = 1$.

Now, we prove (c).

Suppose x + y = 0. Then (c) is obvious.

Now suppose x + y = 0. Then, at least one of x and y is non zero. Without loss of egenerality, we emay eassume that x = 0. Then $\delta(x) = 1$.

So,
$$\delta(x) + \delta(y) \ge 1$$
. But $\delta(x+y) = 1$

Hence
$$\delta(x+y) \leq \delta(x) + \delta(y)$$
.

1.4 Remark:

It can be easily checked that whenever w is a mininorm on , rw is also a mininorm on where r is any real number $\neq 0$. Hence, for any real number $r \neq 0$, $r \square$ is also a mininorm on . $r \square$ is the function given by

$$r\delta(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x \neq 0 \end{cases}$$
(7)

we may denote $r\delta$ by δ_r .

2. Extension of the \Box - function to .

2.1 Definition:

Let $x = (x_1, x_2, ..., x_n) \in \square^n$.

Define $\delta(x)$ by

$$\delta(x) = (\delta(x_1), \delta(x_2), \dots, \delta(x_n)) \tag{8}$$

Let us now define an order relation on .

2.2 Definition:

Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n) \in \square^n$. We say that $x \le y$ and only if $x_i \le y_i$ all i = 1, 2, 3, ... n.

It is clear that \leq is a partial order relation on .

As an illustration, $(2, 0, -3) \le (5, 1, 0)$ in \square^{3} .

But the vectors (2, 0, -3) and (5, -1, 0) are not comparable with respect to this order. Thus, the law of trichotomy does not hold in with respect to this order for n > 1.

It is now iinteresting ito inote that most of ithe iproperties $\delta \Box$ on hold for the extended \Box on.

•

2.3 Proposition: \Box in satisfies the following:

(a)
$$\delta(x) \ge 0$$
 for all $x \in \square^n$ and $\delta(x) = 0$ if and only if $x = 0$.

(b) $\delta(rx) = \delta(x)$ for all $x \in \square^n$ and for all $0 \neq r \in \square$.

(c)
$$\delta(x+y) \le \delta(x) + \delta(y)$$
 for all $x, y \in \square^n$.

Proof:

Let
$$x = (x_1, x_2, ..., x_n)$$
 and $y = (y_1, y_2, ..., y_n) \in \square^n$.
Then, clearly $\delta(x) = (\delta(x_1), \delta(x_2), ..., \delta(x_n)) \ge 0$.

Then, clearly
$$O(x) = (O(x_1), O(x_2), ..., O(x_n)) \ge$$

since $\delta(x_i) \ge 0$ for all *i*.

And
$$\delta(x) = 0$$
 if and only if $\delta(x_i) = 0$ for all *i*

if and only if $x_i = 0$ for all *i* if and only if x = 0.

For $r \neq 0$, consider

$$\delta(rx) = \delta(rx_1, rx_2, ..., rx_n)$$

= $(\delta(rx_1), \delta(rx_2), ..., \delta(rx_n)$
= $(\delta(x_1), \delta(x_2), ..., \delta(x_n))$
= $\delta(x).$

Further,

$$\delta(x+y) = \delta(x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

= $(\delta(x_1 + y_1), \delta(x_2 + y_2), ..., \delta(x_n + y_n))$ (9)

Now, $\delta(x_i + y_i) \leq \delta(x_i) + \delta(y_i)$ for all *i*.

So, (9) gives

$$\delta(x+y) = (\delta(x_1) + \delta(y_1), \delta(x_2) + \delta(y_2), \dots, \delta(x_n) + \delta(y_n))$$

= $(\delta(x_1), \delta(x_2), \dots, \delta(x_n)) + (\delta(y_1), \delta(y_2), \dots, \delta(y_n))$
= $\delta(x) + \delta(y)$

For an x = (x1, x2, ..., xn) in , its norm ||x|| is defined by

$$\|x\| = \left(x_1^2 + x_2^2 + \dots + x_n^2\right)^{1/2}$$
(10)

For x = (x1, x2, ..., xn), put .
$$|x| = (|x_1|, |x_2|, ..., |x_n|)$$
 (11)

Also, for
$$r \in \square$$
, put $\overline{r} = (r, r, \dots, r) \in \square^n$ (12)

For example, $= \overline{1} = (1, 1, ..., 1).$

Now we have the result:

2.4 Proposition:

Let $. x \in \square^n$ (a) If $x \ge 1$, then $||x|| \ge ||\delta(x)||$ (b) If $. |x| \le 1$, then $||x|| \le ||\delta(x)||$ Proof: Suppose $x \ge 1$. That is, $x_i \ge 1$ for all i. So, $x_i^2 \ge 1^2 = \delta(x_i)^2$ for all i. Hence, $x_i^2 + x_2^2 + \dots + x_n^2 \ge \delta(x_i)^2 + \delta(x_2)^2 + \dots + \delta(x_n)^2$, which implies $||x|| \ge ||\delta(x)||$. Now, if $|x| \le 1$, then $|x_i| \le 1$ for all i, so that $x_i^2 \le 1^2 = \delta(x_i)^2$. Hence we get, $||x|| \le ||\delta(x)||$. Note: It is not true $x \le 1$ that implies $||x|| \le ||\delta(x)||$.

For example, let $x = (-2, 0, 0) \in \square^3$.

Then .
$$x \leq 1$$

But
$$||x|| = 2 \ge ||\delta(x)||$$
.

2.5 Definition:

For i =1, 2, ..., n, ei is the vector defined by

ei = (0, 0, ..., 1, 0, ..., 0), with 1 occurs in the ith place and all other co ordinators are 0.

Remark:

 $\delta(e_i) = e_i$.

More generally, for $r \neq 0$

$$\begin{split} \delta(re_i) &= \delta(0, 0, ..., r, 0, 0, ..., 0) \\ &= (0, 0, ..., \delta(r), 0, 0, ..., 0) \\ &= (0, 0, ..., 1, 0, 0, ..., 0) \\ &= e_i. \end{split}$$

References

- [1] Justesan and Hoholdt A course in Error Correcting codes, Hindustan Book Agency, New Delhi, 2004.
- [2] E. Kreyszig Introductory Functional Analysis with Applications, John Wiley & Sons, New York, 1978.

M. Melna Frincy, J.R.V. Edward

- [3] B.V. Limaye Functional Analysis, New Age International Publishers, New Delhi, 1996.
- [4] G.F. Simmons Introduction to Topology and Modern Analysis, Mc Graw Hill, Tokyo, 1963.