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Abstract 

In this paper we developed a mathematical model which describes the dynamics of prey- 

predator interaction with scavenger. The model based on Holling type II functional response. 

Here we tried to develop model using system of non linear differential equation. We solved the 

equilibrium points and their existence. The positivity and of the solution of the model are also 

determined. Conditions for local and global stability analysis are studied both analytically and 

numerically. The study also addresses the effect of extinction of a population and mechanism 

that three species coexist. As a result the mechanism that three species become coexist if there is 

large number of prey population compute with small number of predator and average number of 

scavenger population. The scavenger species also has a great role in stabilizing as well as for 

coexistence of three species. Numerical simulations are carried out to illustrate the analytical 

findings. Finally the biological implication of analytical and numerical are discussed critically 

 

Key words: Lyapunov function, mathematical model, prey-predator-scavenger, Stability 

Analysis 

 

Introduction 

The phenomena systems of phenomena interacting with in a given system are governed by 

mathematical equation called mathematical model. Environmental ecology is one of field in 

which mathematical model is applied to quantify the interacting species. The one of the oldest 

model which quantifies the interacting species in ecology is called prey-predator model. This 

known model is first time developed independently by Vito Voltera and Alfried Lotka in 

1926(Chauvet, E.,2002). 

This model consists system of non-linear differential equation. These system of non-linear 

ordinary differential equation: 

                       {

dx

dt
= x(a − by)

dy

dt
= y(−c + dx)

------------------ (1) 
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Where y(t) and x(t) represent, respectively, the predator and prey population as functions. of 

time. The parameters   a, b, c, d > 0, are interpreted as follows(Boyce W.E. & DiPrima 
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R.C.,(1977)): 

• a denotes the natural growth rate of the prey in the absence of predators, 

• b denotes the effect of predation on the prey, 

• c denotes the death rate of the predator due to lack of food, 

• d denotes the efficiency and propagation rate of the predator in the presence of prey 

 

Without loss of generality, taking parameters a = 1, b = 1 and d = 1, with fixed point (c, 1) all 

solutions in first quadrant are positive. In this equation, predator population is directly 

proportional to prey population. That is, if there is more prey population, the predator get more 

food and increases in number. However, when the predator population increases more and more, 

the prey population in the closed habitat will decreases and eventually,  die out. When predators 

population is high there is scarce food, prey. This increase the competition among predator 

population and they eventually, decease due to shortage of food, since prey is the only source of 

predators. This trend continues as time goes on, implying a stable coexistence of the two 

populations.  

 

The modified two dimensional Lotka-Volterra is model of logistic growth of two species 

including the factor called carrying capacity. In this  logistic model, two population make 

oscillating curve , but eventually, amplitude oscillation decreases until die out.  Predator-prey 

model also uses a nonlinear of equations that includes logistic growth of two species, a carrying 

capacity of the prey, and a predatory factor. The modified Lotka-Volterra predator-prey model is 

given by 

 

                                       {

dx

dt
= x(1 − bx − y)

dy

dt
= y(−c + x)

----------------- (2) 

 

Where b is the carrying capacity of the prey and c is the death rate of the predator. 

In the modified model, we find that the populations start as a pair of oscillating curves, but over 

time the amplitude of the oscillations decrease with each period of time until the curves attain 

out. This implies that the populations experienced a stable coexistence that saturates after 

sometime such that the populations will remain constant. 

The Lotka-Volterra model indeed may be the simplest possible predator-prey model. It has been 

criticized as being unrealistic mainly for its structural instability and the assumption of the 

unlimited growth of the prey population x(t) in the absence of a predator Nevertheless, it is a 

useful tool containing the basic properties of the real predator-prey dynamics, and serves as a 

robust basis from which it is possible to develop more sophisticated and realistic models. 

The model (2) can be naturally generalized for the multi-species case. The generalization of  the 

Lotka-Volterra model (1), for the multi-species case retains the basic features of real ecological 

systems and, allows us to obtain valuable results that are easy to be interpreted.  

For the three-species predator-prey interaction two possibilities arise the two prey-one predator 

systems 
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{
 
 

 
 

dx1

dt
= x1(a1 − b1y)

dx2

dt
= x2(a1 − b2y)

dy

dt
= y(−c + d1x1 + d2x2)

--------------- (3) 

Here x1, x2 are prey population and y(t) is predator population. The interaction of kiwi-rabbits-

stoats is an example. The populations of both species are far from reaching their media capacity 

as a result of predation and artificial controlling of the rabbit population. Furthermore, both the 

kiwi and the rabbits have the same predators: stoats, cats, minks, or any others. Hence, the kiwi-

rabbit-stoat interaction can be adequately described by the equations (3). 

 

And two predator-one prey systems, 

          

      

{
 
 

 
 

dx

dt
= x(a1 − b1y1 − b2y2)

dy1

dt
 = y1(−c1 + d1x)

dy2

dt
= y2(−c2 + d1x1 + d2x)

    --------------- (4) 

 

Where as y1, y2 are predator population and x (t) is prey population. For example, lion-tiger-

antelope, describe the situation when two predator species depend on a common prey and 

furthermore, these two predator species do not interact directly, they do not get directly, do not 

predate one the other, and do not depend one on the other as a food source. Such situations are 

not unusual, and can arise in many different cases. 

We consider a three species, the prey, predator and scavenger where the scavenger is a predator 

of the prey and scavenges the carcasses of the predator. There is the case where the scavenger 

has no negative effects on the population that it scavenges. Possible A triple of such species are 

hyena/lion/antelope, where the hyena scavenges lion carcasses and preys upon antelope. But, in 

our study the scavenger affect the population it scavenges and also eaten by predator. An 

example of such a triple can be a lion, zebra and hyena, where the lion is considered as predator, 

zebra the prey and the hyena represents scavenger. To understand more let us see the diagram 

below. 

 

 
Figure 1: Schematic diagram for the dynamics of the prey, predator and scavenger in an 

ecosystem 

As we observe from the above diagram both species predator and scavenger use a variety of 

different resources from two tropic level, so we called as generalist Interaction among these three 

species can be observed by learning the population growth investigate these growth we develop 
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the mathematical model which represent the dynamics of the prey, predator and scavenger. In the 

model we use functional response Holling type II to make the system more real. Then we 

determine equilibrium points, positivity and boundedness of the solution and also both local as 

well as global stability of the system. 

 

2. Model Formulation 

We consider the following predator–prey model with scavenger interaction. 

a) Assumptions and Parameters of the Model 

The following assumptions are made in order to construct the model: 

❖ The prey will grow logistically in the absence of predators and scavenger population. The 

logistic growth model is illustrated by the term  AX(1 −
B

A
X) 

❖ the rate of predation upon the prey is proportional to the encounters of predators and prey 

or the effect on prey population due to interaction with some of predator populations. 

This assumption is represented by the term 
BXY

A1+X
    

❖ the rate of predation upon the prey is proportional to the encounters of scavenger and 

prey or interaction between prey and scavenger populations. This assumption is 

represented by the term 
DXY

A1+X
   

❖ Predators will die out exponentially in the absence of prey and scavengers or natural 

death rates of predator populations. This assumption is represented by the term EY.  

❖ the predator population increases, due to predation upon prey or benefit of predator 

population from prey population. The terms  
FXY

A1+X
 is represents this assumption. 

❖ the predator population increases, due to predation upon scavenger  that is there is a 

predator population which eat scavenger population. The terms 
GXY

A1+X
 is represents this 

assumption. 

❖ without predators and prey the scavengers will also almost goes to extinct. The terms that 

represent this assumption are HZ and HZ2   

❖ the term HZ represent natural death rate of the scavenger and HZ2ensures that the 

interaction within scavenger species itself for the same resource. 

❖ The scavenger population benefits from prey and predator that die naturally. The terms 

representing this assumptions are 
JXY

A1+X
 and 

KXY

A1+X
 respectively. 

❖ predators prey and scavengers will come across each other randomly in the environment. 

❖ The populations live in closed environment 

 

Parameters of the model 

Table 1: parameters of the model 

Parameters Interpretation 

A natural growth rate of X 

A1 half saturation constants for Y and Z 

A2 half saturation constants for Z 

A3 half saturation constants for Y 
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B interaction between prey population itself 

C effect on x due to predation of Y 

D rate changes on the X population in due to 

presence of S 

E natural death rate of Y 

F benefit to Y from X 

G benefit` to Y from Z 

H natural death rate of Z 

I interaction between S population itself 

J benefit to Z from X 

K benefit to  Z from X 

 

 

Description of Model 

In this model, we considered three species prey, predator and scavenger in modefied three 

species prey-predator model. In this modified three species model, the first species called prey is 

act as the food for both predator and scavenger. And the second species called predator, feed 

only on pey and the third species called scavenger is feed on both  prey and predator. As result, 

scavenger population affect the prey population and indirectly reduces the number of predator 

due to it decreases the prey population which is food for predator. 

Depending on these assumptions the model is developed using system of non-linear differential 

equation:  

{
 
 

 
 
dX

dt
= AX − BX2 −

CXY

A1+X
−

DXY

A1+X

dY

dt
=

FXY

A1+X
+

GXY

A1+Z
− EY

dZ

dt
=

JXY

A1+X
−

KXY

A1+Y
− HZ − HZ2

--------------------- (6)  

Where X(t), Y(t), Z(t) are the prey, the predator and scavenger populations respectively. All the 

parameters in the equation (6) are positive. 

Dimensionless form of the model 

A model can be transformed into a dimensionless form. That is rewriting the system in terms of 

dimensionless quantities. One of the advantages of a system in the dimensionless form is that the 

number of parameters is reduced to a minimum and it makes the analysis easier. Furthermore 

parameters can be better compared with each other, in terms of small and large and thus one gets 

more insight into the system. It is also possible to make a comparison between different systems 

(Murray J.D, 2002). The dynamics of the new model will be the same as in the original system. 

The equation (6) can be rewritten as: 
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{
 
 

 
 
dX

dt
= AX(1 −

B

A
X) −

CXY

A1(1+
X

A1
)
−

DXY

A1(1+
X

A1
)

dY

dt
= −EY +

FXY

A1(1+
X

A1
)
+

GXY

A1(1+
Z

A1
)

dZ

dt
= −HZ − HZ2 +

GXY

A1(1+
X

A1
)
+

KXY

A1(1+
X

A1
)

-------------------- (7) 

Letting, τ = At, x =
X 

A1
 , y =

Y

A2,
 z =

Z

A3
    and substituting (7), dimensionless form of system 

becomes 

{
 
 

 
 
dx

dt
= x(1 − α1x) −

β1xy

(1+x)
−

θ1xz

(1+x)
= f(x, y, z)

dy

dt
=

α2xy

(1+x)
+

β2xy

(1+z)
− θ2y = g(x, y, z)

dz

dt
=

α3xz

(1+x)
+

β3xz

(1+y)
− θ3z − θ4z

2 = h(x, y, z)

      ------------------------ (8) 

Where 𝛼1 = 
𝐴1  𝐵

𝐴
 , 𝛽1 = 

𝐴2  𝐶

𝐴𝐴1
 ,   𝜃1 = 

𝐴3𝐷

𝐴𝐴1
  , 𝛼2 =

𝐹

𝐴
  , 𝛽2 =

𝐺

𝐴
  , 𝜃2 =

𝐸

𝐴
 , 𝛼3 = 

𝐽

𝐴
 ,     𝛽3 =

𝐾

𝐴
,         𝜃3 =

𝐻

𝐴
 , 𝜃4 =

𝐼𝐴3

𝐴
   and 𝜏 is substituted for t for simplicity. 

i) Positivity of solution 

Theorem: All solutions of the system (8) are positive 

Proof:  the equation (8) can be written as 

𝑥(𝑡) = 𝑥(0) 𝑒𝑥𝑝 (∫ ((1 − 𝛼1𝑥(𝑠)) −
𝛽1𝑦(𝑠)

(1+𝑥(𝑠))
−

𝜃1𝑦(𝑠)

(1+𝑥(𝑠))
)𝑑𝑠

𝑡

0
)  

𝑦(𝑡) = 𝑦(0) 𝑒𝑥𝑝 (∫ (
𝛼2𝑥(𝑠)

(1+𝑥(𝑠))
+

𝛽2𝑥(𝑠)

(1+𝑧(𝑠))
− 𝜃2

𝑡

0
)𝑑𝑠)  

𝑧(𝑡) = 𝑧(0) 𝑒𝑥𝑝 (∫ (
𝛼3𝑥(𝑠)

(1+𝑥(𝑠))
+

𝛽3𝑥(𝑠)

(1+𝑥(𝑠))
− 𝜃3 − 𝜃4𝑧(𝑠))

𝑡

0
𝑑𝑠)  

For 𝑥(0) > 0, 𝑦(0) > 0, 𝑧(0) > 0   all solutions remain within the first quadrant of the x-y-z 

plane starting from an interior point of it. 

Hence, ℝ+
3 = {(𝑥, 𝑦, 𝑧): 𝑥, 𝑦, 𝑧 ≥ 0} is invariant set 

ii) Boundedness of Solution 

Theorem: All solution of (8) are uniformly bounded if the initial conditions 

𝑥(0), 𝑦(0), 𝑧(0) > 0. 

Proof: from first equation (8) 
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𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝛼1𝑥) −

𝛽1𝑥𝑦

(1+𝑥)
−

𝜃1𝑥𝑧

(1+𝑥)
≤ 𝑥(1 − 𝛼1𝑥) ⇒ 𝑥(𝑡) ≤

1

𝑒−𝑡

𝑥𝑜
+𝛼1

  For all 𝑡 ≥ 0,which 

implies 𝑥(𝑡) < 1 for sufficiently large t. 

Let x (t), y(t), z(t) be any positive solution of (8), with positive initial conditions and define that 

𝑤 = 𝛼3 𝛼2 𝑥(𝑡) + 𝛽1 𝛼3𝑦(𝑡) + 𝜃1 𝛼2 𝑧(𝑡)     Then  
𝑑𝑤

𝑑𝑡
= 𝛼3 𝛼2

𝑑𝑥

𝑑𝑡
+ 𝛽1 𝛼3

𝑑𝑦

𝑑𝑡
+ 𝜃1 𝛼2

𝑑𝑧

𝑑𝑡
                

Therefore 
𝑑𝑤

𝑑𝑡
= 𝛼3 𝛼2(𝑥(1 − 𝛼1𝑥)) + 𝛽1 𝛼3(

𝛽2𝑧0𝑦

(1+𝑧0)
− 𝜃2𝑦) + 𝜃1 𝛼2(

𝛽3𝑦0𝑧

(1+𝑦0)
− 𝜃3𝑧 − 𝜃4𝑧

2) 

Now choosing, 𝛼1 = 1, 𝛽2 =
1+𝑧0

𝑧0
  , 𝛽3 = 

1+𝑦0

𝑦0
     then  

𝑑𝑤

𝑑𝑡
≤ 𝛼3 𝛼2(𝑥(1 − 𝑥)) + 𝛽1 𝛼3𝑦 + 𝜃1 𝛼2𝑧 Moreover, 

𝑑𝑤

𝑑𝑡
≤ 𝛼3 𝛼2 − 𝛾(𝑥 + 𝑦 + 𝑧)    

Where 𝛾 = 𝑚𝑖𝑛 {𝛼3 𝛼2, 𝛽1 𝛼3 , 𝜃1 𝛼2  }   this implies that  
𝑑𝑤

𝑑𝑡
+ 𝛾𝑤 ≤ 𝛼3 𝛼2 now using method 

first order ordinary differential equation and applying inequality, we get 

0 < 𝑤 <
𝛼3 𝛼2(1−𝑒

−𝛾𝑡)

𝛾
+𝑤(𝑥0, 𝑦0, 𝑧0)𝑒

−𝛾𝑡  for 𝑡 → ∞,𝑤 →
𝛼3 𝛼2

𝛾
 

Therefore there exist 𝜂1 , 𝜂2, 𝜂3 >0 such thatℝ+
3 = {(𝑥, 𝑦, 𝑧):0 ≤ 𝑥 ≤ 𝜂1, 0 ≤ 𝑦 ≤ 𝜂2 ,0 ≤ 𝑧 ≤

𝜂3} hence, our system is bounded. 

iii) Equilibrium points and their existence  

The equilibriums points of the system (8) can be found that setting  all the equation to zero and 

solving the system for x(t),y(t) and z(t).  To find equilibriums points of the system, we solve the 

following system equations simultaneously  

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝛼1𝑥) −

𝛽1𝑥𝑦

(1+𝑥)
−

𝜃1𝑥𝑧

(1+𝑥)
= 𝑓(𝑥, 𝑦, 𝑧) = 0

𝑑𝑦

𝑑𝑡
=

𝛼2𝑥𝑦

(1+𝑥)
+

𝛽2𝑥𝑦

(1+𝑧)
− 𝜃2𝑦 = 𝑔(𝑥, 𝑦, 𝑧) = 0

𝑑𝑧

𝑑𝑡
=

𝛼3𝑥𝑧

(1+𝑥)
+

𝛽3𝑥𝑧

(1+𝑦)
− 𝜃3𝑧 − 𝜃4z

2 = ℎ(𝑥, 𝑦, 𝑧) = 0

----------------------------- (9) 

That is equivalent to solving eight equilibriums points of system (9), namely, 

 𝐸0(0,0,0),
𝐸1(𝑥

∗, 0,0), 𝐸2(0, 𝑦
∗, 0), 𝐸3(0,0, 𝑧

∗) , 𝐸4(𝑥
∗, 𝑦∗, 0), 𝐸5(𝑥

∗, 0, 𝑧∗), 𝐸6(0, 𝑦
∗, 𝑧∗), 𝐸7(𝑥

∗, 𝑦∗, 𝑧∗)           

With {𝐸0(0,0,0), 𝐸1 (
1

𝛼
, 0,0) ,

𝐸2(0,0,0), 𝐸3 (0,0,
−𝜃3

𝜃4
) , 𝐸4 (

𝜃2

𝛼2−𝜃2
,
𝛼2((𝛼2−𝜃2)−𝛼1𝜃2

𝛽1(𝛼2−𝜃2)2
, 0) , 𝐸5(𝑥

∗, 0, 𝑧∗), 

𝐸6 (0,
𝜃(𝛽 − 𝜃) + 𝜃𝜃

(𝛽3 − 𝜃3)(𝛽2 − 𝜃2) − 𝜃2𝜃4
,

𝜃2
𝛽2 − 𝜃2

) , 𝐸7(𝑥
∗, 𝑦∗, 𝑧∗) }   
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Where 𝐸5(𝑥
∗, 0, 𝑧∗) 𝑎𝑛𝑑 𝐸7(𝑥

∗, 𝑦∗, 𝑧∗)   determined using numerically. 

Local stability analysis of equilibrium points 

The local stability of each equilibrium points are studied using Jacobeans matrix and finding 

Eigen value at each equilibrium points. We continue analysis of Jacobeans matrix J of three 

dimensional systems by  

 𝐽 =

[
 
 
 
 
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕𝑧

𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

𝜕𝑔

𝜕𝑧

𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝑦

𝜕ℎ

𝜕𝑧]
 
 
 
 

 ,        𝐽(𝑥, 𝑦, 𝑧) =

[
 
 
 
 
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕𝑧

𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

𝜕𝑔

𝜕𝑧

𝜕ℎ

𝜕𝑥

𝜕ℎ

𝜕𝑦

𝜕ℎ

𝜕𝑧]
 
 
 
 

 

𝐽(𝑥, 𝑦, 𝑧) =

[
 
 
 
 1 − 2𝛼x −

𝑦𝛽1

(1+𝑥)2
−

𝑦𝜃1

(1+𝑥)2
−
𝑥𝛽1

1+𝑥
−
𝑥𝜃1

1+𝑥

𝑦𝛼2

(1+𝑥)2
−
𝑥𝛼2

1+𝑥
−

𝑧𝛽2

1+𝑧
− 𝜃2

𝑧𝛽3

(1+𝑧)2

𝑧𝛼3

(1+𝑥)2
𝑧𝛽3

(1+𝑦)2
𝑥𝛼3

1+𝑥
−

𝑦𝛽3

1+𝑦
− 2𝜃4𝑧 − 𝜃3]

 
 
 
 

 --------(10) 

 

i) Local stability of 𝑬𝟎(𝟎, 𝟎, 𝟎)  

The Jacobian of matrix at 𝐸0(0,0,0) of (10) is 

𝐽(0,0,0) = [
1 0 0
0 −𝜃2 0
0 0 −𝜃3

] , since 𝐽(0,0,0) is diagonal matrix, with eigenvalues: 

1, −𝜃2, 𝑎𝑛𝑑 −𝜃3.    this shows that our system is unstable at (0,0,0) because the sign of eigen 

values are different. 

ii) Local stability at 𝑬𝟏 (
𝟏

𝜶
, 𝟎, 𝟎)  

𝐽 (
1

𝛼
, 0,0) =

[
 
 
 
 −1 −

𝛽1

1+𝛼1
−

𝜃1

1+𝛼1

0
𝛼2

1+𝛼1
− 𝜃2 0

0 0
𝛼3

1+𝛼1
− 𝜃3]

 
 
 
 

 ,   since  𝐽 (
1

𝛼
, 0,0) is upper triangular matrix, the 

eigen values are: −1,
𝛼2

1+𝛼1
− 𝜃2 𝑎𝑛𝑑 

𝛼3

1+𝛼1
− 𝜃3. Now the system to be stable at  𝐸1 (

1

𝛼
, 0,0), the 

two conditions must satisfy: 

a) 
𝛼2

1+𝛼1
< 𝜃2, 

b) 
𝛼3

1+𝛼1
< 𝜃3. 

 If these two conditions holds true then our system is local asymptotically stable at 

𝐸1 (
1

𝛼
, 0,0). 
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iii) Local stability at 𝑬𝟐(𝟎, 𝟎, 𝟎) 

Which is the same as i) above? 

iv) Local stability at 𝑬𝟑 (𝟎, 𝟎,
−𝜃3

𝜃4
)? 

v) Local stability at 𝐸4 (
𝜃2

𝛼2−𝜃2
,
𝛼2((𝛼2−𝜃2)−𝛼1𝜃2

𝛽1(𝛼2−𝜃2)2
, 0) 

𝐽(𝐸4) =

[
 
 
 
 
 
𝛼2 𝜃2−𝛼1 𝛼2𝜃2−𝛼1𝜃2

2−𝜃2
2

𝛼2 (𝛼2 −𝜃2)
−
𝛽1𝜃2

𝛼2
−
𝜃1𝜃2

𝛼2
𝛼2−𝜃2−𝛽1𝜃2

𝛽1
0 0

0 0
𝛼2 𝛽3(𝛼2 −𝜃2)−𝛼1 𝛼2𝜃2𝛽3−𝛼1𝜃2

2−𝜃2
2

𝛽1(𝛼2 −𝜃2)2+𝛼2 (𝛼2 −𝜃2)−𝛼1 𝛼2𝜃2
+
𝜃2𝛼3

𝛼2
− 𝜃3]

 
 
 
 
 

  

The characteristic equation can be 

𝜆3 − (𝑎11 + 𝑎33)𝜆
2 + (𝑎11 𝑎33 − 𝑎12𝑎21)𝜆 + 𝑎12𝑎21𝑎33 = 0   Where, 𝑎11 =

𝛼2 𝜃2−𝛼1 𝛼2𝜃2−𝛼1𝜃2
2−𝜃2

2

𝛼2 (𝛼2 −𝜃2)
, 𝑎12 = −

𝛽1𝜃2

𝛼2
, 𝑎13 = −

𝜃1𝜃2

𝛼2
, 𝑎33 =

𝛼2 𝛽3(𝛼2 −𝜃2)−𝛼1 𝛼2𝜃2𝛽3−𝛼1𝜃2
2−𝜃2

2

𝛽1(𝛼2 −𝜃2)2+𝛼2 (𝛼2 −𝜃2)−𝛼1 𝛼2𝜃2
+

𝜃2𝛼3

𝛼2
− 𝜃3  

thus it is form of 𝑎3𝜆
3 + 𝑎2𝜆

2 + 𝑎1𝜆 + 𝑎0 = 0.  Since 𝑎3 = 1 which is positive by              

Routh-Hurwitz criteria, 𝜆′𝑠 negative if 𝑎2 > 0, 𝑎0 > 0, 𝑎2𝑎1 − 𝑎0 > 0 . Each of these conditions 

are considered next as follows: 

(a). 𝑎2 > 0,⇒ −(𝑎11 + 𝑎33) > 0  this can be satisfied if 𝑎11 < 0 𝑜𝑟 𝑎33 < 0   

i) if 𝑎11 < 0 ⇒ 𝛼2 𝜃2 − 𝛼1 𝛼2𝜃2 − 𝛼1𝜃2
2 − 𝜃2

2 < 0 ⇒ 𝛼2 𝜃2(1 − 𝛼1 ) − 𝜃2
2(𝛼1 − 1) < 0  this 

will hold if 𝛼1 < 1. In terms of original parameters it represents  that 𝐹 < 𝐴.  This implies that, 

the benefits of  predator populations from interaction with prey population is less than natural 

growth rates of prey population  in the absence of predator and scavenger populations. 

ii) 𝑎33 < 0  ⇒ (𝛼2
2𝛽3(𝛼2 − 1) + (2𝛽1𝛼2𝜃2 − 𝛽1𝛼2

2)(𝜃3 − 𝜃2𝛼3) + 𝛼1 𝛼2𝜃2(𝛼3 − 𝜃2)(𝜃3 −

𝛽2𝛼2) + 𝛼2𝜃2
2(𝛽1𝜃2 − 𝛽3) + 𝛼2𝜃2𝛼3(𝛼2 − 𝜃2) + 𝜃2𝜃3(𝛼2 − 𝛽1𝜃2)) < 0  

Therefore, 𝑎33 < 0  𝑖𝑓 𝛼2 < 1, 𝜃3 < 𝜃2𝛼3 , 𝛼3 < 𝜃2, 𝛽1𝜃2 < 𝛽3, 𝛼2 < 𝜃2 𝑎𝑛𝑑 𝛼2 < 𝛽1𝜃2    

c) 𝑎0>0⇒ 𝑎12𝑎21𝑎33 > 0 this is satisfied if, for 𝑎33 < 0 𝑎𝑛𝑑  𝑎21 > 0  

Clearly, 𝑎12 = −
𝛽1𝜃2

𝛼2
  , this is negative. 

d) 𝑎2𝑎1 − 𝑎0 > 0 ⇒ 𝑎11 < 0, 𝑎12 < 0, 𝑎33 < 0  𝑎𝑛𝑑  𝑎11𝑎33 − 𝑎12𝑎21 < 0   (∇) 

Therefore, 𝐸4 (
𝜃2

𝛼2−𝜃2
,
𝛼2((𝛼2−𝜃2)−𝛼1𝜃2

𝛽1(𝛼2−𝜃2)2
, 0) is locally asymptotically stable if conditions satisfied. 

vi) Local stability at 𝐸5 
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𝐽(𝐸5) =

[
 
 
 
 
(1+𝑥∗)2−2𝛼1 𝑥

∗(1+𝑥∗)2−𝜃1𝑧
∗

(1+𝑥∗)2
−
𝛽1𝑥

∗

1+𝑥∗
−

𝜃1𝑥
∗

1+𝑥∗

0
𝛼2 𝑥

∗(1+𝑧∗)+𝛽2𝑧
∗(1+𝑥∗)−𝜃2(1+𝑥

∗)(1+𝑧∗)

(1+𝑥∗)(1+𝑧∗)

𝛽3𝑧
∗

(1+𝑧∗)2

𝛼3𝑧
∗

(1+𝑥∗)2
𝛽3𝑧

∗ 𝛼3𝑧
∗−2𝜃4𝑧

∗ (1+𝑥∗)−𝜃3(1+𝑥
∗)

1+𝑥∗ ]
 
 
 
 

   

The Eigen values of 𝐽(𝐸5) are obtained by solving 

𝑑𝑒𝑡 [

𝑎11 − 𝜆 −𝑎12 −𝑎13
0 𝑎22 − 𝜆 −𝑎23

−𝑎31 −𝑎32 𝑎33 − 𝜆
] = 0  

Where;𝑎11 =
(1+𝑥∗)2−2𝛼1 𝑥

∗(1+𝑥∗)2−𝜃1𝑧
∗

(1+𝑥∗)2
, 𝑎12 =

𝛽1𝑥
∗

1+𝑥∗
 ,   𝑎13 =

𝜃1𝑥
∗

1+𝑥∗
 𝑎22 =

𝛼2 𝑥
∗(1+𝑧∗)+𝛽2𝑧

∗(1+𝑥∗)−𝜃2(1+𝑥
∗)(1+𝑧∗)

(1+𝑥∗)(1+𝑧∗)
, 𝑎31 =

𝛼3𝑧
∗

(1+𝑥∗)2
, 𝑎32 = 𝛽3𝑧

∗, 𝑎33 =
𝛼3𝑧

∗−2𝜃4𝑧
∗ (1+𝑥∗)−𝜃3(1+𝑥

∗)

1+𝑥∗
  

The characteristic equation becomes 

𝜆3 − (𝑎11 + 𝑎22)𝜆
2 + (𝑎11 𝑎22 + 𝑎11 𝑎33 + 𝑎22𝑎33 − 𝑎13  𝑎31)𝜆 + 𝑎12𝑎23𝑎31 + 𝑎22𝑎13  𝑎31 −

𝑎11𝑎22𝑎33 = 0   This is form  𝑎3 𝜆
3 + 𝑎2 𝜆

2 + 𝑎1 𝜆
1 + 𝑎0  = 0 

By Routh-Hurwitz criteria the 𝜆′s are negative if 𝑎2 > 0, 𝑎0 > 0, 𝑎2 𝑎1 − 𝑎0 > 0 . And we 

considered each of these conditions as follows: 

i) 𝑎2 > 0 ⇒ −(𝑎11 + 𝑎22 + 𝑎33) > 0  𝑜𝑟 𝑎11 + 𝑎22 + 𝑎33 < 0     
ii) 𝑎0 > 0 ⇒   𝑎12𝑎23𝑎31 + 𝑎22𝑎13  𝑎31 > 𝑎11𝑎22𝑎33  
iii) 𝑎2 𝑎1 − 𝑎0 > 0 ⇒ −(𝑎11 + 𝑎22)(𝑎11 𝑎22 + 𝑎11 𝑎33 + 𝑎22𝑎33 – 𝑎13  𝑎31) +

 𝑎11𝑎22𝑎33 − 𝑎12𝑎23𝑎31 − 𝑎22𝑎13  𝑎31 > 0   (∇∇) 

Therefore, 𝐸5 is locally asymptotically stable if conditions (i), (ii ) and (iii) holds true. 

vii) Local stability at 𝑬𝟕 

Similar to 𝑬𝟓 after solving Jacobian matrix of system (10)  at equilibrium point 

𝐸7(𝑥
∗, 𝑦∗, 𝑧∗), the eigenvalues are found by solving 

𝑑𝑒𝑡 [

𝑎11 − 𝜆 −𝑎12 −𝑎13
𝑎21 𝑎22 − 𝜆 −𝑎23
−𝑎31 −𝑎32 𝑎33 − 𝜆

] = 0  

Where; 𝑎11 =
(1+𝑥∗)2−2𝛼1 𝑥

∗(1+𝑥∗)2−𝜃1𝑧
∗

(1+𝑥∗)2
, 𝑎12 =

𝛽1𝑥
∗

1+𝑥∗
 ,   𝑎13 =

𝜃1𝑥
∗

1+𝑥∗
, 𝑎21 =

𝛼2 𝑦
∗

(1+𝑥∗)2
 ,         𝑎22 =

𝛼2 𝑥
∗(1+𝑧∗)+𝛽2𝑧

∗(1+𝑥∗)−𝜃2(1+𝑥
∗)(1+𝑧∗)

(1+𝑥∗)(1+𝑧∗)
, 𝑎31 =

𝛼3𝑧
∗

(1+𝑥∗)2
, 𝑎32 = 𝛽3𝑧

∗, 𝑎33 =

𝛼3𝑧
∗−2𝜃4𝑧

∗ (1+𝑥∗)−𝜃3(1+𝑥
∗)

1+𝑥∗
 

The characteristic equation becomes  
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𝜆3 − (𝑎11 + 𝑎22)𝜆
2 + (𝑎11 𝑎22 + 𝑎11 𝑎33 + 𝑎22𝑎33 − 𝑎13  𝑎31)𝜆 + 𝑎12𝑎23𝑎31 + 𝑎22𝑎13  𝑎31 −

𝑎11𝑎22𝑎33 = 0   This is form  𝑎3 𝜆
3 + 𝑎2 𝜆

2 + 𝑎1 𝜆
1 + 𝑎0  = 0 

By Routh-Hurwitz criteria the 𝜆′s are negative if 𝑎2 > 0, 𝑎0 > 0, 𝑎2 𝑎1 − 𝑎0 > 0 . And we 

considered each of these conditions as follows: 

i) 𝑎2 > 0 ⇒ −(𝑎11 + 𝑎22 + 𝑎33) > 0  𝑜𝑟 𝑎11 + 𝑎22 + 𝑎33 < 0     
ii) 𝑎0 > 0 ⇒   𝑎12𝑎23𝑎31 + 𝑎22𝑎13  𝑎31 > 𝑎11𝑎22𝑎33  
iii) 𝑎2 𝑎1 − 𝑎0 > 0 ⇒ −(𝑎11 + 𝑎22)(𝑎11 𝑎22 + 𝑎11 𝑎33 + 𝑎22𝑎33 – 𝑎13  𝑎31) +

 𝑎11𝑎22𝑎33 − 𝑎12𝑎23𝑎31 − 𝑎22𝑎13  𝑎31 > 0    

Therefore, 𝐸7 is locally asymptotically stable if conditions (i), (ii ) and (iii) holds true. 

Global Stability Analysis of the Equilibrium Points 

Theorem: the equilibrium point 𝐸4(𝑥∗, 𝑦∗, 0) is globally asymptotically stable. 

Proof : Let us consider the following Liapunovs function 

𝑉(𝑥, 𝑦, 𝑧) = 𝑥 − 𝑥∗ − 𝑥∗ 𝑙𝑛 𝑥 𝑥∗⁄ + 𝑦 − 𝑦∗ − 𝑦∗ 𝑙𝑛
𝑦
𝑦∗⁄ +

𝑧

2

2

  

Now the time derivative of V, along the solution of (8/9) can be written as   

 
𝑑𝑉

𝑑𝑡
=
𝑥 − 𝑥∗

𝑥

𝑑𝑥

𝑑𝑡
+
𝑦 − 𝑦∗

𝑦

𝑑𝑦

𝑑𝑡
+ 𝑧 

𝑑𝑧

𝑑𝑡
 

=  (𝑥 − 𝑥∗) (1 − 𝛼𝑥 −
𝛽1𝑦

1 + 𝑥
) + (𝑦 − 𝑦∗ ) (

𝛼2𝑥

1 + 𝑥
− 𝜃2)        

This is also simplified to  

𝑑𝑉

𝑑𝑡
= −𝛼1(𝑥 − 𝑥∗)2 − (𝛽1 − 𝛼2)

(𝑥−𝑥∗)(𝑦−𝑦∗)

(1+𝑥)(1+𝑥∗)
− 𝛽1

(𝑥−𝑥∗)(𝑥𝑦−𝑥∗𝑦∗)

(1+𝑥)(1+𝑥∗)
             which is negative 

definite when  𝛽1 > 𝛼2 

Therefore, with these conditions, 𝐸4(𝑥∗, 𝑦∗, 0) is globally asymptotically stable. 

4. Numerical Simulation 

4.1   Dynamics of   prey and predator populations 

If the scavenger population dies out, the remaining model reverts back to the classical prey 

predator model. The only difference is functional response included between them. 

The model which describes their dynamics are 

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝛼1𝑥) −

𝛽1𝑥𝑦

(1+𝑥)
------------------------------- (11) 

𝑑𝑦

𝑑𝑡
=

𝛼2𝑥𝑦

(1+𝑥)
− θ2𝑦  
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By using  𝛼1 = 0.1, 𝛼2 = 0.25, 𝛽1 = 0.3, 𝜃2 = 0.2        we can plot the above system of 

equation (11) as follows 

 

Figure1: Dynamics of prey and predator without scavenger populations 

In the initial due to less number of prey species the predator species fails downward and prey 

species dominated for a low rate. The prey abundances are not strongly positively correlated 

then as one prey species becomes scarce, the predator can continue to feed and increase its 

population size. As we observe from the above figure when the predator population decreases 

the prey population conversely increased and vice versa. 

 

4.2 Dynamics of predator and scavenger populations 

In the absence of prey population the system of differential equation which describes the 

dynamics between predator and scavenger populations is given by 

𝑑𝑦

𝑑𝑡
=

𝛽2𝑦𝑧

(1 + 𝑧)
− 𝜃2𝑦 − − − − −−−−(12) 

𝑑𝑧

𝑑𝑡
=

𝛽3𝑥𝑧

(1 + 𝑦)
− 𝜃3𝑧 − 𝜃4𝑧

2 

One thing that differentiates this paper from other is the benefits of predator species from 

scavenger species are included. Now we see their dynamics without prey species by using 

𝛽2 =  0.25   𝛽3 = 0.6    𝜃2 = 0.2   𝜃3 = 0.3    𝑎𝑛𝑑 𝜃4 = 0,1     
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Figure 2:Dynamics of predator and scavenger with out prey 

As we observe from the graph without prey population predator as well as scavenger population 

can exist only for a few times. The scavenger benefit more from interaction between prey and 

predator, but here the only its source is natural death rates of predator. The predator population 

benefits from the interaction with scavenger population but not enough for them. In the case of 

initial both species almost the same and the scavenger species dominates the predator species. 

But,  after a low rates the predator species dominates the scavenger species always, even-though 

their population decreases from time to time. Furthermore after a long period of time both 

species almost goes to extinct. From this we conclude that predator and scavenger populations 

cannot live without prey population for long time. 

4.3 Dynamics of Prey and Scavengers 

Similarly, the non-linear differential equation system which shows the dynamics between prey 

and scavenger populations without predator population is represented as follows, 

 

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝛼1𝑥) −

𝜃1𝑥𝑧

(1+𝑥)
  

 
𝑑𝑧

𝑑𝑡
=

𝛼3𝑥𝑧

(1+𝑥)
− 𝜃3𝑧 − 𝜃4𝑧

2 

Using parameters, 𝛼1 = 0.1 , 𝛼3 = 0.01 , 𝜃1 =  0.1 , 𝜃3 = 0.3  , 𝑎𝑛𝑑   𝜃4 =  0.1  to show 

dynamics of two species: 
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Figure 3:Dynamics of prey and scavenger without predator 

 

4.5. Coexistence of three species 

One of the most important question in mathematical biology is concerns the long term survival 

or coexistence of all the species in multi-species community. 

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝛼1𝑥) −

𝛽1𝑥𝑦

(1+𝑥)
−

𝜃1𝑥𝑧

(1+𝑥)

𝑑𝑦

𝑑𝑡
=

𝛼2𝑥𝑦

(1+𝑥)
+

𝛽2𝑥𝑦

(1+𝑧)
− 𝜃2𝑦

𝑑𝑧

𝑑𝑡
=

𝛼3𝑥𝑧

(1+𝑥)
+

𝛽3𝑥𝑧

(1+𝑦)
− 𝜃3𝑧 − 𝜃4𝑧

2

  

 So, to show coexistence of prey, predator and scavenger population we shall use parameters 

𝛼1 = 0.1, 𝛼2 = 0.25, 𝛼3 = 0.01, 𝛽1 = 0.3 𝛽2 = 0.35, 𝛽3 = 0.003 , 𝜃1 = 0.04, θ2 = 0.21, 𝜃3 =
0.035, 𝜃4 = 0.1  and initial point (𝑥0, 𝑦0 , 𝑧0) = (15.2, 4.6, 10.4)    
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Figure 4: coexistence of three species 

The mechanism that prey, predator and scavenger species coexist is if low predation occurs in an 

ecosystem. Furthermore, three species become coexist if large number of prey population 

computes with less number of predator and average number of scavenger populations. As their 

figure shows all three species increases  constantly. Even-though, both predator and scavenger 

depends on prey species due to large number of prey species their number rise up constantly. 

Additionally, the main things that maintain their coexistence is both predator and scavenger 

species cannot get all of the prey species. The scavenger species benefits from the large number 

prey species as well as from their dead bodies results to increase constantly from time to time. 

The predator species also gets enough food from other two and their population flows the prey 

and scavenger species. 

EQUILBRIUM POINTS 

In previous section we solved four equilibrium point analysis. Now for these and left two were 

determine the equilibrium points numerically. We start by setting value for parameter 𝛼1 = 0.1,
𝛼2 = 0.25, 𝛼3 = 0.01, 𝛽1 = 0.3 𝛽2 = 0.4, 𝛽3 = 0.6 , 𝜃1 = 0.5, 𝜃2 = 0.2, 𝜃3 = 0.3, 𝜃4 = 0.01. 

Then the equilibriums become, 

i) Trivial equilibrium point(0,0,0) 

ii) 𝐸1 = (
1

𝛼
, 0,0) = (10,0,0)             

iii) 𝐸2 = (
𝜃2

𝛼2−𝜃2
,
𝛼2((𝛼2−𝜃2)−𝛼1𝜃2

𝛽1(𝛼2−𝜃2)2
, 0) = (4,10,0) 
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iv) 𝐸3 = (0,
𝜃(𝛽−𝜃)+𝜃𝜃

(𝛽3−𝜃3)(𝛽2−𝜃2)−𝜃2𝜃4
,

𝜃2

𝛽2−𝜃2
) = (0,2,1) 

v) 𝐸4 = (𝑥
∗, 0, 𝑧∗)       

In previous section we made difficulty to solve this equilibrium point analytically. 

Now easily by numerical 𝐸4 = (𝑥∗, 0, 𝑧∗) = (1.9854,0,7.2185)       
vi) Positivity of 𝐸5  = (𝑥

∗, 𝑦∗, 𝑧∗)    , similar to E4 it is difficult to solve analytically, but 

by using MATLAB computer program  

E5  = (x∗, y∗, z∗) = (0.0321,1.8874, 0,9251)    

Equilibrium Existence condition  Stability condition 

Eo Always exist saddle 

E1 Always exist If θ2 <
α2

1+α1
 and θ3 <

α3

1+α1
 

E2  If  θ2 < α2 and α1θ2 < α2 −
θ2 

if(∇)  holds 

  

E3 

If  θ2 < β2,  θ3 < β3 and 

 θ2 θ4 < (β3 −  θ3)(β2 −  θ2) 
if (∇∇)holds 

 

Result and discussion 

In this section the stability of the equilibrium points were discussed and the result of the study 

was described in both analytically and numerically. The following condition is needed to 

analysis the equilibrium points of the system. The results in our study coincide with Nolting B.et 

al..,(2008). 

p(λ) = λ3 + a1λ
2 + a2 λ + a3 = 0   be characteristic equation for matrix defined in (10). Then 

the following statements are true. 

i) If every roots of the characteristic equation is less than one, then the equilibrium point 

of the system (9) is locally asymptotically stable and equilibrium is called sink 

ii) If at least one of the root has absolute value greater than one, then the equilibrium 

point of system (9) is unstable and the equilibrium is called saddle.  

iii) If every root of system has absolute value greater than one, then the system is 

unstable and the equilibrium is called source. 

Using this  lemma we check the stability analysis numerically at give equilibrium 

points; 

 

Local stability of 𝐄𝐨 

we shall use parameters  α1 = 0.1, α2 = 0.25, α3 = 0.01, β1 = 0.3 β2 = 0.4, β3 = 0.06 , θ1 =
0.5, θ2 = 0.2, θ3 = 0.3, θ4 = 0.01. and Eo(0.2,0.1,0.5) and substituting in the Jacobean matrix 

(10) this set of parameter values the Eigen value becomes λ1 = 1, λ2 = −0.2, λ3 = −0.3 .  This 

implies the equilibrium Eo(0.2,0.1,0.5) is unstable. Now by using above parameters we show 

their graph  as follows. 
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Figure 5:Time serious plot for unstable equilibrium point E_o 

       

local stability of 𝐄𝟏 

Local stability of  E1 we shall use β3 = 0.06 , θ2 = 0.25, θ3 = 0.3 and other as before we get 

eigen value λ1 = −1, λ2 = −0.023, λ3 = −0.29 and E1(9.7,0.5,0.6). hence with this parameter 

E1 is asymptotically stable and their graph is shown as 

 

Figure 6:time serious plot for stable equilibrium point 
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Figure 7:Phase portrait at equilibrium point E_1 

 

Figure 8: Time serious plot for stability at equilibrium point E_2 

 

 

Figure 9:Phase portrait at equilibrium E_2 
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Figure 10:Time serious plot for stability equilibrium point E_3 

 

Figure 11: Time serious plot for stability equilibrium point E_4 
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Figure 12:Time serious plot for stability equilibrium point E_5 

 

 

CONCLUSION 

Modified Lotka Voltera model of three species is discussed in this paper. These three species are 

prey, predator and scavenger in some closed ecology. In this model these three species interact in 

ecology non-linearly governed by ordinary differential equation. In this paper we discussed, 

three species are coexisting in some conditions. Here we found that predator and prey can coexist 

in absence of scavenger. In contrary, scavenger and predator cannot exist without prey. This is 

because prey is food for both the rest species. Finally, the main aim of this paper is to analysis 

the coexistence of these three species. Thus, these species coexist in two main ways: they will 

cycle in between two stable population or the populations will cycle until they get saturated and 

remain constant. 
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