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Abstract:  

In this manuscript, our aim is to prove a new common fixed point theorem for four compatible and 

subsequentially continuous (alternately sub compatible and reciprocally continuous) maps in the G-metric 

spaces satisfying a more generalized contractive condition. 
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1. Introduction:  

The notion of G-metric spaces was introduced by Mustafa and Sims [6]. After that a lot of authors have 

worked in this direction [see 7-10]. 

Following definitions will be used in sequel: 

Definition 1.1[6] G-metric spaces:  

In 2006, Mustafa and Sims introduced the concept of G-metric space as follows: 

Let 𝑋 be a nonempty set, and 𝑙𝑒𝑡 𝐺 ∶  𝑋 ×  𝑋 ×  𝑋 →  ℝ+ be a function satisfying the following: 

(G1)  𝐺(𝑥, 𝑦, 𝑧)  =  0 𝑖𝑓 𝑥 =  𝑦 =  𝑧, 

(G2)  0 <  𝐺(𝑥, 𝑥, 𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 𝑖𝑛 𝑋 𝑤𝑖𝑡ℎ 𝑥 ≠  𝑦, 

(G3)  𝐺(𝑥, 𝑥, 𝑦)  ≤  𝐺(𝑥, 𝑦, 𝑧) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 𝑖𝑛 𝑋 𝑤𝑖𝑡ℎ 𝑧 ≠  𝑦, 

(𝐺4) (𝑥, 𝑧, 𝑦)  = (  𝐺(𝑥, 𝑦, 𝑧)  =   𝐺(𝑦, 𝑧, 𝑥)  = . . . (symmetry in all three variables), 

(G5)  𝐺(𝑥, 𝑦, 𝑧)  ≤  𝐺(𝑥, 𝑎, 𝑎)  +  𝐺(𝑎, 𝑦, 𝑧) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧, 𝑎 𝑖𝑛 𝑋 (rectangle inequality). 

Then the function 𝐺 is called a 𝐺-metric on 𝑋 and the pair (𝑋, 𝐺) is called a 𝐺-metric space. 

 Definition 1.2[6] If 𝐺(𝑥, 𝑦, 𝑦) = 𝐺(𝑦, 𝑥, 𝑥) ∀ 𝑥, 𝑦 ∈ 𝑋, then (𝑋, 𝐺) is called a symmetric 𝐺 − metric 

space. 

 Definition 1.3[1] Let (𝑋, 𝐺) be a 𝐺- metric space and 𝑆 and 𝑇 be two self maps on 𝑋. Then 𝑆 and 𝑇  are 

said to be compatible if 

lim
𝑛→∞

𝐺(𝑆𝑇𝑥𝑛,, 𝑇𝑆𝑥𝑛, 𝑇𝑆𝑥𝑛) = 0 , whenever {𝑥𝑛} is a sequence in 𝑋 such that 

lim
𝑛→∞

𝑆𝑥𝑛 =  lim
𝑛→∞

𝑇𝑥𝑛 = 𝑧 for some 𝑧 ∈ 𝑋.  
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Definition 1.4[2] Two self mappings 𝑆 and 𝑇  are said to be conditionally reciprocally continuous, if 

whenever the set of sequences {𝑥𝑛}  in 𝑋 satisfying lim
𝑛→∞

𝑆𝑥𝑛 =  lim
𝑛→∞

𝑇𝑥𝑛 is nonempty, there exit a 

sequence {𝑦𝑛} in 𝑋  satisfying lim
𝑛→∞

𝑆 𝑦𝑛 =  lim
𝑛→∞

𝑇𝑦𝑛 = 𝑡 (say) such that lim
𝑛→∞

𝑆𝑇𝑦𝑛 =

 𝑆𝑡 𝑎𝑛𝑑  lim
𝑛→∞

𝑇𝑆𝑦𝑛 = 𝑇𝑡.  

Definition 1.5[2] A pair of self mappings 𝑆 and 𝑇 is said to be reciprocally continuous if lim
𝑛→∞

𝑆𝑇𝑥𝑛 = 𝑆𝑡,

lim
𝑛→∞

𝑇𝑆𝑥𝑛 = 𝑇𝑡 whenever {𝑥𝑛}  is a sequence in 𝑋 such that lim
𝑛→∞

𝑆𝑥𝑛 =  lim
𝑛→∞

𝑇𝑥𝑛 = 𝑡 , for some 𝑡 𝑖𝑛 𝑋.  

Definition 1.6[5] A pair of self mappings 𝑆 and 𝑇   is said to be subcompatible if lim
𝑛→∞

𝑆𝑥𝑛 = 𝑡,

lim
𝑛→∞

𝑇𝑥𝑛 = 𝑡 whenever {𝑥𝑛} is a sequece in 𝑋 and lim
𝑛→∞

𝐺(𝑆𝑇𝑥𝑛,, 𝑇𝑆𝑥𝑛, 𝑇𝑆𝑥𝑛) = 0. 

Definition 1.7[5] A pair of self mappings 𝑆 and 𝑇 is said to be subsequentially continuous  if {𝑥𝑛}  is a 

sequence in 𝑋 such that lim
𝑛→∞

𝑆𝑥𝑛 =  lim
𝑛→∞

𝑇𝑥𝑛 = 𝑡 for some 𝑡 𝑖𝑛 𝑋 such that  

lim
𝑛→∞

𝑆𝑇𝑥𝑛 = 𝑆𝑡, lim
𝑛→∞

𝑇𝑆𝑥𝑛 = 𝑇𝑡 . 

2. Main Result  

 In this section, we shall prove a common fixed point Theorem for four compatible and 

subsequentially continuous self maps in G-metric spaces. 

Theorem 2.1. Let 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇 be four self mappings on a G-metric space(𝑋, 𝐺), and suppose that the 

pairs (𝐴, 𝑆) and (𝐵, 𝑇) are compatible and subsequentially continuous (alternately subcompatible and 

reciprocally continuous) and satisfying the following inequality: 

𝐺(𝐴𝑥, 𝐵𝑦, 𝐵𝑧)  ≤  𝑝{𝐺(𝑆𝑥, 𝑇𝑦, 𝑇𝑧)  +  𝐺(𝐴𝑥, 𝑆𝑥, 𝑆𝑥)} + 𝑞 {𝐺(𝑆𝑥, 𝑇𝑦, 𝑇𝑧) +  𝐺(𝐵𝑦, 𝑇𝑦, 𝑇𝑧)}      

                             + r 𝑚𝑎𝑥 {𝐺(𝑆𝑥, 𝑇𝑦, 𝑇𝑧),
𝐺(𝑆𝑥,𝐵𝑦,𝐵𝑧)+ 𝐺((𝐴𝑥,𝑇𝑦,𝑇𝑧))

2
} ,                                    ( 2.1) 

where 𝑝, 𝑞, 𝑟 > 0 𝑎𝑛𝑑 𝑝 + 𝑞 + 𝑟 < 1. 

Then 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇  have a unique common fixed point in 𝑋. 

Proof. Given that the pair (𝐴, 𝑆) is sequentially continuous and compatible, so there exists a sequence 

{𝑥𝑛}  in 𝑋 such that lim
𝑛→∞

𝐴𝑥𝑛 =  lim
𝑛→∞

𝑆𝑥𝑛 = 𝑧 for some 𝑧 ∈ 𝑋 and lim
𝑛→∞

𝐺(𝐴𝑆𝑥𝑛,, 𝑆𝐴𝑥𝑛, 𝑆𝐴𝑥𝑛) =

𝐺(Az, Sz, Sz) = 0.   

This implies that 𝐴𝑧 = 𝑆𝑧.  

Thus 𝑧 is a coincidence point of the pair ( 𝐴, 𝑆). 

Similarly, the pair (𝐵, 𝑇) is sequentially continuous and compatible, so there exists a sequence {yn}  in 𝑋 

such that 

lim
𝑛→∞

𝐵𝑦𝑛 =  lim
𝑛→∞

𝑇𝑦𝑛 = 𝑤 for some 𝑤 ∈ 𝑋 and 

 lim
𝑛→∞

𝐺(𝐵𝑇𝑦𝑛,, 𝑇𝐵𝑦𝑛, 𝑇𝐵𝑦𝑛) = 𝐺(Bw, Tw, Tw) = 0.   

This implies that 𝐵𝑤 = 𝑇𝑤, that is, 𝑤 is a coincidence point of the pair (𝐵, 𝑇). 

Now, we claim that 𝑧 = 𝑤, 𝑖𝑓 𝑧 ≠ 𝑤, then using the inequality (2.1) with 𝑥 = 𝑥𝑛, 𝑦 = 𝑦𝑛. 𝑎𝑛𝑑 𝑧 = 𝑦𝑛,  

We have 

𝐺(𝐴xn, 𝐵𝑦𝑛, 𝐵𝑦𝑛)  ≤  𝑝{𝐺(𝑆𝑥𝑛, 𝑇𝑦𝑛, 𝑇𝑦𝑛)  +  𝐺(𝐴𝑥𝑛, 𝑆𝑥𝑛 , 𝑆𝑥𝑛)} 

             +𝑞 {𝐺(𝑆𝑥𝑛, 𝑇𝑦𝑛, 𝑇𝑦𝑛)  +  𝐺(𝐵𝑦𝑛, 𝑇𝑦𝑛, 𝑇𝑦𝑛)}   

               + 𝑟 𝑚𝑎𝑥 {𝐺(𝑆𝑥𝑛, 𝑇𝑦𝑛, 𝑇𝑦𝑛),
𝐺(𝑆𝑥𝑛,𝐵𝑦𝑛,𝐵𝑦𝑛)+ 𝐺((𝐴xn,𝑇𝑦𝑛,𝑇𝑦𝑛))

2
}. 

Making 𝑛 → ∞, we get 

 𝐺(𝑧, 𝑤, 𝑤)  ≤  𝑝{𝐺(𝑧, 𝑤, 𝑤) +  𝐺(𝑧, 𝑧, 𝑧)} + 𝑞 {𝐺(𝑧, 𝑤, 𝑤)  +  𝐺(𝑧, 𝑧, 𝑧)}      
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                         + 𝑟 𝑚𝑎𝑥 {𝐺(𝑧, 𝑤, 𝑤),
𝐺(𝑧,𝑤,𝑤)+ 𝐺((𝑧,𝑤,𝑤))

2
}, that is, 

 𝐺(𝑧, 𝑤, 𝑤)  ≤  𝑝{𝐺(𝑧, 𝑤, 𝑤) +  0} + 𝑞 {𝐺(𝑧, 𝑤, 𝑤)  +  0}      

                         + 𝑟 𝑚𝑎𝑥{𝐺(𝑧, 𝑤, 𝑤), 𝐺(𝑧, 𝑤, 𝑤)}, that is, 

 𝐺(𝑧, 𝑤, 𝑤)  ≤  𝑝{𝐺(𝑧, 𝑤, 𝑤) } + 𝑞 {𝐺(𝑧, 𝑤, 𝑤) }      

                         + 𝑟 {𝐺(𝑧, 𝑤, 𝑤) }  

                    < (𝑝 + 𝑞 + 𝑟){𝐺(𝑧, 𝑤, 𝑤)} 

                    < {𝐺(𝑧, 𝑤, 𝑤)}, 

a contradiction.  

Hence 𝑧 = 𝑤. 

Now, we prove that 𝐴𝑧 = 𝑧.  

On the contrary, suppose that, 𝐴𝑧 ≠ 𝑧. 

On making use of the inequality (2.1) with 𝑥 = 𝑧, 𝑦 = 𝑦𝑛 , 𝑧 = yn , we have 

𝐺(𝐴z, 𝐵𝑦𝑛, 𝐵𝑦𝑛)  ≤  𝑝{𝐺(𝑆𝑧, 𝑇𝑦𝑛, 𝑇𝑦𝑛)  +  𝐺(𝐴𝑧, 𝑆𝑧, 𝑆𝑧)} 

           +𝑞 {𝐺(𝑆𝑧, 𝑇𝑦𝑛, 𝑇𝑦𝑛)  + 𝐺(𝐵𝑦𝑛, 𝑇𝑦𝑛 , 𝑇𝑦𝑛)}   

         +  𝑟 𝑚𝑎𝑥 {𝐺(𝑆𝑧, 𝑇𝑦𝑛, 𝑇𝑦𝑛),
𝐺(𝑆𝑧,𝐵𝑦𝑛,𝐵𝑦𝑛)+ 𝐺((𝐴𝑧,𝑇𝑦𝑛,𝑇𝑦𝑛))

2
}. 

Making limit as 𝑛 → ∞, we get 

 𝐺(𝐴𝑧, 𝑤, 𝑤)  ≤  𝑝{𝐺(𝑆𝑧, 𝑤, 𝑤)  +  𝐺(𝐴𝑧, 𝐴𝑧, 𝐴𝑧)} + 𝑞 {𝐺(𝑆𝑧, 𝑤, 𝑤) +  𝐺(𝑤, 𝑤, 𝑤)}   

                            + 𝑟 𝑚𝑎𝑥 {𝐺(𝑆𝑧, 𝑤, 𝑤),
𝐺(𝑆𝑧,𝑤,𝑤)+ 𝐺((𝑆𝑧,𝑤,𝑤))

2
}, that is, 

 𝐺(𝐴𝑧, 𝑤, 𝑤)  ≤  𝑝{𝐺(𝑆𝑧, 𝑤, 𝑤)  +  0} + 𝑞 {𝐺(𝑆𝑧, 𝑤, 𝑤) +  0}      

                            + 𝑟 𝑚𝑎𝑥{𝐺(𝑆𝑧, 𝑤, 𝑤), 𝐺(𝑆𝑧, 𝑤, 𝑤)}, that is, 

 𝐺(𝐴𝑧, 𝑤, 𝑤)  ≤  𝑝{𝐺(𝑆𝑧, 𝑤, 𝑤) } + 𝑞 {𝐺(𝑆𝑧, 𝑤, 𝑤) }      

                          + 𝑟 {𝐺(𝑆𝑧, 𝑤, 𝑤)} 

                      < (𝑝 + 𝑞 + 𝑟){𝐺(𝑆𝑧, 𝑤, 𝑤)} 

                     < {𝐺(𝐴𝑧, 𝑤, 𝑤)}, 

a contradiction.  

Hence 𝐴𝑧 = 𝑤 = 𝑧.  

So 𝐴𝑧 = 𝑧. 

Now, we claim that 𝐵𝑧 = 𝑧.  

Let, if possible, 𝐵𝑧 ≠ 𝑧.  

Using the inequality (2.1) with 𝑥 = 𝑥𝑛, 𝑦 = 𝑧. 

𝐺(𝐴xn, 𝐵𝑧, 𝐵𝑧)  ≤  𝑝{𝐺(𝑆𝑥𝑛 , 𝑇𝑧, 𝑇𝑧)  +  𝐺(𝐴𝑥𝑛, 𝑆𝑥𝑛, 𝑆𝑥𝑛)} 

         +𝑞 {𝐺(𝑆𝑥𝑛, 𝑇𝑧, 𝑇𝑧) +  𝐺(𝐵𝑧, 𝑇𝑧, 𝑇𝑧)}   

       +  𝑟 𝑚𝑎𝑥 {𝐺(𝑆𝑥𝑛, 𝑇𝑧, 𝑇𝑧),
𝐺(𝑆𝑥𝑛,𝐵𝑧,𝐵𝑧)+ 𝐺((𝐴xn,𝑇𝑧,𝑇𝑧))

2
}. 

Making limit as 𝑛 → ∞, we get 

 𝐺(𝑧, 𝐵𝑧, 𝐵𝑧)  ≤  𝑝{𝐺(𝑆𝑧, 𝑇𝑧, 𝑇𝑧) +  𝐺(𝑧, 𝑧, 𝑧)} + 𝑞 {𝐺(𝑧, 𝑇𝑧, 𝑇𝑧)  +  𝐺(𝐵𝑧, 𝑇𝑧, 𝑇𝑧)}            

                                𝑟 𝑚𝑎𝑥 {𝐺(𝑧, 𝑇𝑧, 𝑇𝑧),
𝐺(𝑧,𝐵𝑧,𝐵𝑧)+ 𝐺((𝑧,𝑇𝑧,𝑇𝑧))

2
}. 

 𝐺(𝑧, 𝐵𝑧, 𝐵𝑧)  ≤  𝑝{𝐺(𝑧, 𝐵𝑧, 𝐵𝑧)  +  0} + 𝑞 {𝐺(𝑧, 𝐵𝑧, 𝐵𝑧)  +  0}  

    +  𝑟 𝑚𝑎𝑥 {𝐺(𝑧, 𝐵𝑧, 𝐵𝑧),
𝐺(𝑧,𝐵𝑧,𝐵𝑧)+ 𝐺((𝑧,𝐵,𝐵𝑧))

2
}. 

 𝐺(𝑧, 𝐵𝑧, 𝐵𝑧)  ≤  𝑝{𝐺(𝑧, 𝐵𝑧, 𝐵𝑧) } + 𝑞 {𝐺(𝑧, 𝐵𝑧, 𝐵𝑧) } + 𝑟 {𝐺(𝑧, 𝐵𝑧, 𝐵𝑧)}  

  𝐺(𝑧, 𝐵𝑧, 𝐵𝑧)  ≤ ( 𝑝 + 𝑞 + 𝑟){𝐺(𝑧, 𝐵𝑧, 𝐵𝑧) } 
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 𝐺(𝑧, 𝐵𝑧, 𝐵𝑧) < 𝐺(𝑧, 𝐵𝑧, 𝐵𝑧), 

a contradiction.  

Hence 𝐵𝑧 = 𝑧. 

So 𝐴𝑧 = 𝐵𝑧 = 𝑆𝑧 = 𝑇𝑧 = 𝑧. 

Hence 𝑧 is a common fixed point of the four mappings 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇. 

Uniqueness: Let 𝑤 be another common fixed point of the mappings 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇. Then we have 𝐴𝑤 =

𝐵𝑤 = 𝑆𝑤 = 𝑇𝑤 = 𝑤. Now using the inequality (2.1) we have.  

𝐺(𝑧, 𝑤, 𝑤) = 𝐺(Az, Bw, Bw)  ≤  𝑝{𝐺(𝑆𝑧, 𝑇𝑤, 𝑇𝑤) +  𝐺(𝐴𝑧, 𝑆𝑧, 𝑆𝑧)} 

                    +𝑞 {𝐺(𝑆𝑧, 𝑇𝑤, 𝑇𝑤) +  𝐺(𝐵𝑤, 𝑇𝑤, 𝑇𝑤)}   

           +  𝑟 𝑚𝑎𝑥 {𝐺(𝑆𝑧, 𝑇𝑤, 𝑇𝑤),
𝐺(𝑆𝑧,𝐵𝑤,𝐵𝑤)+ 𝐺((𝐴𝑧,𝑇𝑤,𝑇𝑤))

2
}. 

 𝐺(𝑧, 𝑤, 𝑤) ≤  𝑝{𝐺(𝑧, 𝑤, 𝑤) +  𝐺(𝑧, 𝑧, 𝑧)} + 𝑞 {𝐺(𝑧, 𝑤, 𝑤)  +  𝐺(𝑤, 𝑤, 𝑤)}    

+ 𝑟 𝑚𝑎𝑥 {𝐺(𝑧, 𝑤, 𝑤),
𝐺(𝑧,𝑤,𝑤)+ 𝐺((𝑧,𝑤,𝑤))

2
}. 

 𝐺(𝑧, 𝑤, 𝑤)  ≤  𝑝{𝐺(𝑧, 𝑤, 𝑤) } + 𝑞 {𝐺(𝑧, 𝑤, 𝑤) } +  𝑟 𝑚𝑎𝑥{𝐺(𝑧, 𝑤, 𝑤), }, that is, 

 𝐺(𝑧, 𝑤. 𝑤) ≤ (𝑝 + 𝑞 + 𝑟)(𝐺(𝑧, 𝑤, 𝑤)), that is, 

 𝐺(𝑧, 𝑤. 𝑤) < (𝐺(𝑧, 𝑤, 𝑤)), 

a contradiction. Hence 𝑧 is a unique common fixed point of the four mappings 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇. 

Now as our supposition the pair (𝐴, 𝑆) is subcompatible and reciprocally continuous, then there exists a 

sequence {𝑥𝑛}  in 𝑋 such that 

lim
𝑛→∞

𝐴𝑥𝑛 =  lim
𝑛→∞

𝑆𝑥𝑛 = 𝑧 for some 𝑧 ∈ 𝑋 and 

 lim
𝑛→∞

𝐺(𝐴𝑆𝑥𝑛,, 𝑆𝐴𝑥𝑛, 𝑆𝐴𝑥𝑛) = 𝐺(Az, Sz, Sz) = 0.  This  implies that 𝐴𝑧 = 𝑆𝑧. That is 𝑧 is a coincidence 

point of the pair( 𝐴, 𝑆) 

Similarly, as our supposition that the pair (𝐵, 𝑇) is reciprocally continuous and subcompatible, then there 

exists a sequence {yn}  in 𝑋 such that 

lim
𝑛→∞

𝐵𝑦𝑛 =  lim
𝑛→∞

𝑇𝑦𝑛 = 𝑤 for some 𝑧 ∈ 𝑋 and  lim
𝑛→∞

𝐺(𝐵𝑇𝑦𝑛,, 𝑇𝐵𝑦𝑛, 𝑇𝐵𝑦𝑛) = 𝐺(Bw, Tw, Tw) = 0.  This  

implies that 𝐵𝑤 = 𝑇𝑤. That is 𝑤 is a coincidence point of the pair( 𝐵, 𝑇). The remaining proof is as 

follows from the upper part. 
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