Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

Undergraduate Students' Experiences in Programming:
Difficulties and Obstacles

Universite Ogrencilerinin Programlama Deneyimleri:
Guclukler ve Engeller

Biisra Ozmen Arif Altun
Hacettepe University, Turkey Hacettepe University, Turkey
busraozmen@hacettepe.edu.tr altunar@hacettepe.edu.tr

Abstract

Programming courses become prominent as one of the courses in which undergraduate students are
unsuccessful especially in departments which offer computer education. Students often state that
these courses are quite difficult compared to other courses. Therefore, a qualitative
phenomenological approach was used to reveal the reasons of the failures of the undergraduate
students in programming courses and to examine the difficulties they confronted with programming.
In this scope, the laboratory practices of the Internet Programming course were observed in fall term
of the 2013-2014 academic year in a university at central Anatolia. Interviews were made with 12
undergraduate students taking this course. Finally, the difficulties students experienced in the
programming were determined as programming knowledge, programming skills, understanding
semantics of the program, and debugging. Students emphasized that the biggest causes of failure in
programming languages are lack of practice, not using algorithms and lack of knowledge. In addition,
it was seen that the students who had high programming experience possess higher programming
success and self-efficacy related to programming.

Keywords: Programming, programming language,; programming experfence.

Oz

Programlama dersleri, 6zellikle bilgisayar egitimi veren béliimlerde (niversite 6grencilerinin en
basarisiz oldugu derslerden biri olarak 6ne cikmaktadir. Ogrenciler bu dersleri diger derslere oranla
oldukca zor bulduklarini ifade etmektedirler. Bu dogrultuda, tniversite 6grencilerinin programlama
derslerindeki basarisizliklarinin nedenlerini ortaya koymak ve programlama sirecinde yasadiklari
zorluklari incelemek amaciyla nitel arastirma yontemlerinden biri olan fenomenoloji yaklasimi
kullanilmigtir. Bu kapsamda, 2013-2014 yili gliiz doneminde Turkiye’'de bir devlet Universitesinde
Internet Tabanl Programlama dersinin laboratuvar etkinlikleri gézlemlenmis ve bu derse devam eden
12 6grenci ile gdrisme yapiimistir. Sonug olarak, 6grencilerin programlama siirecinde yasadiklari
zorluklar programlama bilgisi, programlama becerisi, programin mantigini kavrama ve hata ayiklama
olarak belirlenmistir. Ogrenciler, programlamadaki basarisiziklarinin en biyiik nedenlerini pratik
eksikligi, algoritma olusturmama ve bilgi eksikligi oldugunu vurgulamiglardir. Ek olarak, programlama
deneyimi yiiksek olan 6grencilerin programlama basarilarinin ve programlamaya iliskin 6z yeterlilik
algilarinin yiiksek oldugu gorilmistdir.

Anahtar Sozciikler: Programlama, programlama dili; programlama deneyimi.

mailto:busraozmen@hacettepe.edu.tr
mailto:altunar@hacettepe.edu.tr

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

Inroduction

In the age of information rapid changes in technology and knowledge-based economy increase the
demand for people graduated from computer-related departments such as computer science,
engineering and communication technology. This situation requires creation of effective learning
opportunities to prepare the students who study in above-mentioned departments for the ever-changing
technological environment. It was required that educators face the challenges in this process in order
to train students well in terms of advanced technology and twenty-first century competencies (Law, Lee
& Yu, 2010). In these popular departments, programming is one of the basic skills which are necessary
to be given to the students.

Programming is one of the basic competencies that students should have in many departments such as
in engineering, in computer education and instructional technologies, and in computer science.
According to Lau and Yuen (2011), although programming has lost its popularity with the emergence
of social networking tools, it is one of the important dimensions of the technology literacy, which is
underestimated in formal schooling just as reading skill is emphasized mostly whereas writing skill is
ignored in most of these institutions (Akpinar & Altun, 2014).

Programming skill has been described as an important instrument in developing higher-order thinking
skills of the individual (Papert, 1991 as cited in Fessakis, Gouli & Mavrodi, 2013). It has an important
role especially in developing problem solving skills (see, Ambrosio et al., 2011; Bergersen & Gustafsson,
2011) at all education levels and therefore attracting the attention of the researchers (Fessakis, Gouli &
Mavrodi, 2013). In addition, programming tools are considered as powerful tools with which students
can solve problems by editing, analyzing, evaluating and explaining their thoughts clearly (diSessa &
Abelson, 1986). In the literature, it has been a quite established agreement that computer programming
makes positive effects on students’ cognitive development (Crescenzi et al., 2012; Utting et al., 2010;
Clements & Sarama, 2003).

There are many factors affecting the programming success. Recently, there has been a trend related to
the discovery of the predictors of programming skills and the cause of the failure in programming
courses (Ferrer-Mico, Fernandez & Sanchez, 2012; Hwang et al., 2012; Shaw, 2012; Lau & Yuen, 2011;
Lau & Yuen, 2009; Sivasakthi & Rajendran, 2011; Hawi, 2010; Jegede, 2009). Studies on this issue
show that programming success is affected by factors such as gender (Yurdugiil & Askar, 2013; Sullivan
& Bers, 2012; Lau & Yuen, 2011), programming experience (Bergersen & Gustafsson, 2011; Lau &
Yuen, 2011; Jegede, 2009), academic achievement and mathematic performance (Lau & Yuen, 2009;
Ambrosio et al., 2011), self-efficacy (Jegede, 2009; Altun & Mazman, 2012) and problem solving skills
(Yurdugil & Askar, 2013; Fessakis, Gouli & Mavroudi, 2013). Therefore, investigation of factors affecting
success in programming courses can increase in student success in these courses which is mandatory
and is mostly perceived as difficult.

Learning a programming language is a difficult process that requires quite a long time. Especially
undergraduate programming courses are perceived as difficult by students who have basic programming
knowledge because it often requires higher-order thinking skills (Tan, Ting & Ling, 2009). Studies
indicate that the majority of students have difficulties in learning programming languages (Ambrosio et
al., 2011; Hawi, 2010; Askar & Davenport, 2009). This situation has resulted in failure in programming
courses (Robins, Rountree & Rountree, 2003). Students’ repeated failure experience has led to a loss
of excitement and interest especially towards learning programming language (Law, Lee & Yu, 2010).
This situation has led researchers to study on increasing the programming success and to develop
different methods in this regard. Jiau, Chen and Su (2009) have developed materials related to
concretization of programming education. Rajala et al. (2008) have prepared a program visualization

10

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

tool (VILLE) by using Java. Arabacioglu, Bilbil and Filiz (2007) have designed an application language
for teaching and turning programming logic into concrete display. Similarly, Mannila et al. (2006) have
focused on the teaching of programming languages with Python.

Programming language course is still one of the most difficult courses that students fail. Although there
are various demands revealed in the literature for learners to master in programming, most of the
studies were conducted with computer science students in mind. In cases where computer teachers are
trained for lower grades, there is a need to explore the challenges teacher trainees experience during
this process. Therefore, in this study, it was aimed to reveal the reasons of the failures of the
undergraduate students in programming courses at the college of education and to investigate the views
about problems that they confronted with in programming.

Method

This study was designed as a phenomenological research, which aims to reveal individuals’ perceptions
of experiences about a phenomenon. In phenomenological research, researchers focus on a topic which
they are actually aware of but about which they do not have deep knowledge (Creswell, 2007; Yildirim
& Simsek, 2011). Hence, in this study it has been attempted to determine the reasons of failure of
undergraduate students in programming courses and the difficulties they encounter.

Study group

In determining the study group, criterion-based sampling was selected from the purposeful sampling
methods. According to Patton (1990), criterion-based sampling gives the possibility to obtain a wealth
of information by examining the topics studied deeply. In this way, it provides great benefits to reveal
lots of events and phenomenon, and their explanations. In criterion-based sampling, the study group is
formed by choosing the ones that meet the determined criteria by researchers (Yildirm & Simsek, 2011).
Study group consisted of undergraduate students taking the Internet Programming course at the
department of Computer Education and Instructional Technologies (CEIT) program in a university at
central Anatolia in 2013-2014 fall term. High-level expression skills and the desire to participate
voluntarily were taken to into consideration while selecting the study group. Interviews were conducted
with 12 students. Demographic information regarding the participants was given in Table 1.

Seven students who participated in the working group are women and five of them are men. A large
proportion of these students (N=9) has graduated from vocational high schools. Achievements scores
in Programming I and Programming II courses which students took in their prior terms and Internet
Programming course were taken for granted in describing their programming success. Information on
programming experience of the students was taken from the answers given to the question "What was
your previous programming experience?”

11

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

Table 1
Participant Information

Type of Programming Programming

Student Gender graduated high .
experience success

school
S1 Female Vocational Low High
S2 Female Vocational High High
S3 Female Vocational Low Low
S4 Female General Low Medium
S5 Female Vocational Low Medium
S6 Male Vocational High High
S7 Female Vocational Low Low
S8 Male Vocational Low Medium
S9 Male Technical High High
S10 Male Technical High Low
S11 Female Vocational Low Medium
S12 Male Vocational High Medium

Data Collection Tools

The laboratory meetings during the Internet Programming course were observed for two weeks by one
of the authors. In the first week, two observations were made for two and a half hours. Similarly the
second week, two observations were made for three hours. The activities conducted in this course, the
level of students’ engagement in these activities and students' willingness to write a program were
examined. Non-structured observation was used in this study. Observations were carried out in a
laboratory. In the observation process the researcher made non-participant observation. The observer
does not interfere with the process of observation in this type of observation (Glesne, 2013). Field notes
from each observation were made by the researcher and were used to supplement the information
collected in the interviews. All of the observations were recorded in video format. The data, collected in
the observation, may be used as the data source that provides contribution and additional information
to forming the study in detail (Glesne, 2013; Yildinm & Simsek, 2011). With the observations made in
the study, it was decided on sub-objectives of the study, the study group and the place of the study. In
this direction it has been decided to interview with the students regarding to their difficulties in
programming.

The interviews were conducted as semi-structured and were individual interviews, based on an interview
guide and comprising a series of open-ended questions. Each interview lasted
approximately 15-20 min and all of them were made in the study room of the CEIT department by first
author. There were eight questions in the form. The questions asked in the interview included guiding
questions that students have followed in the programming, the practices they have made in the
programming course and the difficulties they had confronted in this process, the effect of previous
programming experience, the perception of self-efficacy related to their programming skill and wish of
spending additional time for programming. The questions were designed to encourage students to give
detailed information in order to ensure an effective interview. It was paid a special attention not to give
a directive guidance during the interviews. All interviews were recorded on a tape recorder to be
transcribed afterwards.

12

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

Data Analysis

The data attained in the study were analyzed through content analysis, which aims at bringing similar
data together under certain concepts and themes. In this direction, the data are conceptualized initially,
and then the concepts are arranged systematically and finally the data analyzing process is terminated
with the themes formed (Yildinm & Simsek, 2011).

Before data analysis, all recorded data were transcribed by the researcher. The analysis was processed
through qualitative data analysis software (NVivo8), which allowed coding the data obtained as a whole
and taking fertile visual output at the end of the analysis. The students' statements were transcribed
without any changes. Within the scope of data analysis, transcripts were initially read carefully. Then,
the coding process was started and various free node lists were created. After these lists were
investigated in a detail, the tree nodes were systematically grouped and categorized in a manner that
is consistent within itself. At the next step, they were collected in a common tree node. In this process,
it was given importance to making the most appropriate meaningful loadings to the main codes and the
sub-codes relating to each main code formed. Finally, data analysis was completed once the themes
had been created. Obtained codes and their frequencies were presented in tables. In addition, it is also
included that the models which including the links to with a top theme of the loadings have made.

Triangulation of data collection tools increases validity by reducing bias in qualitative research (Creswell,
2008). In this study, triangulation of data is maintained by both taking students' views about the
difficulties in programming process, interview data and making observations during laboratory practices.
To ensure inter-rater reliability, the data was first coded and the themes created by the first author.
Then, these themes and randomly selected sample statements related to themes were given two experts
who have taken a course in qualitative research methods. Later, they were asked to code the documents
according to the themes. A percentage agreement between two experts’ reports was calculated as 81%.

Findings

The findings will be presented under the themes emerged from the analysis: difficulties encountered in
programming, the reasons of failures in programming, self-efficacy for programming, and steps followed
in programming. These themes will first be explained as how they showed patterns, and then, will be
provided samples from the data. Table 2 shows the corresponding qualifications across the themes.

Difficulties encountered in programming

Students’ views regarding the difficulties they faced in programming were gathered under four sub-
themes which were named as “understanding semantics of the program”, “debugging”, “programming
skills”, and “programming knowledge”. Model of current theme and its subthemes were given in Figure

1.

13

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

&

difficulties

&

programiming
skills

understanding
semantics

%

programming
knowledge

debugging

daﬁ?lun

structures and
loops

funcions and
parameters

sites

variable

cungpts.

principles

Figure 1. Difficulties Encountered in Programming

Table 2 shows the corresponding qualifications across the difficulties encountered in programming
theme.

Table 2
Qualifications Across the Difficulties Encountered in Programming Theme

Difficulties encountered in Expanded descriptions
programming

Programming knowledge About difficulties related to lack of knowledge
Functions and parameters About difficulties confronted with in remembering the functions
and their parameters in programming
Concepts, principles About difficulties confronted with in knowing concepts, principles
or certain facts related to programming language
Assigning variable About difficulties confronted with in determining the variables to

be used in the program and assigning them
Decision structures and loops About difficulties confronted with in making decisions related to
that which decision structures and loops will be used
Syntax About difficulties confronted with in knowing and remembering
the syntax while writing a program
Understanding semantics of About difficulties confronted with understanding the semantics

the program when writing a program code

Debugging About difficulties confronted with in debugging errors in writing
program codes which have been written earlier and he/she wrote

Programming skills About difficulties confronted with in determining strategy to be

followed while reviewing his/her programming knowledge and
designing solutions to problem

14

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

It was observed that students put their emphasis the most on programming knowledge when describing
the difficulties the experienced in programming. When the data within this theme were examined in a
more detailed way, it was observed that “syntax” is the topic expressed mostly, and “concepts or
principles”, “functions and parameters”, “assigning variables” and “decision structures and loops” are
other topics. Frequencies of codes gotten from analysis of students’ responses related to the difficulties

during programming were given in Table 3.

Table 3
Codes Related to the Difficulties Confronted with and Frequencies

Codes f

Programming knowledge

Syntax

Functions and parameters

Concepts, principles

Assigning variable

Decision structures and loops
Understanding the semantics of the program
Debugging
Programming skills

—_
N

N OowNWO NN O

Almost all of the students experience problems in programming knowledge, and as a result of this, they
have difficulty in syntax. In addition, it was found that most of the students have trouble in the topics
of understanding semantics of the, debugging and programming skills. Understanding semantics of the
program, on the other hand, is different from procedural knowledge. In the procedural knowledge,
students can explain the necessary steps when transforming the programming knowledge. However, in
this situation it is intended to describe their actual performance where they fail to accomplish this
regardless of their existent procedural knowledge. Programming skills theme refers to students’ ability
to designing solutions to problems in programming and to determining strategy to be followed while
reviewing his/her programming knowledge. Concepts or principles theme refers to declarative
knowledge of concepts, principles or certain facts related to the programming language. The following
statements portray this issue well:

S7: "I cannot keep codes in my mind. I grasp the logic and I say to myself that I will do it
here. I can make the sequence, but I cannot write codes after memorizing them. I have to
perpetually look at somewhere to write.” (Programming knowledge- -concepts, principles)

S1: "I read the problem. If I think that there are functions I don't know, I experience
difficulties and I see it as a difficult problem” (Programming knowledge - functions and
parameters)

S4: "I cannot remember string functions. I cannot memorize function of counting number
of lines.” (Programming knowledge — functions and parameters)

S1: "I haven't learnt defining array variables. I couldn’t understand how to do it. Because
I don't understand it alone although I searched the Internet, I have troubles in that topic
now.” (Programming knowledge — assigning variable)

S3: "May be making loops. It is loop topic. It is boring to put an operation into a loop and
to make it continuous. There are a start and an end but it is quite difficult to build
something. ” (Programming knowledge — decision structures and loops)

15

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

S5: "Problems are mostly related to syntax. ... It becomes either when I don't use a sign
or when usage is incorrect. It becomes when I don’t use the word which imply it correctly.”
(Programming knowledge - syntax)

S6: "Punctuation marks cause problems. I forget their place.” (Programming knowledge -
syntax)

S4: "Even if I understand, I can't transform algorithm to codes after forming algorithm. I
can write algorithm, but then I cannot continue after that.” (Programming skills)

S5: "I experience confusion about that I will delete it after I read one line or after I read
all lines. In other words, I don’t guess exactly which way I should follow.” (Programming
skills)

S6: "I don't realize immediately because error sometimes might not be at the current line.
Sometimes, error might be at the first couple of lines. It makes following lines and current
line wrong. I look at the current line to find the problem, but it is at other lines. It might
be difficult to find it.” (Debugging)

S7: "I can find my mistakes, but I cannot find bugs when it doesn’t say 'There is an error
here’ at the lines where I am certain that they are correct.” (Debugging)

S4: "It takes a quite long time to try to understand the program as a first step.”
(Understanding semantics of the program)

S1: "I don‘t know the solution now and I can’t imagine what functions I could use”.
(Understanding semantics of the program)

Reasons of students’ failures in programming

Reasons of students’ failures in programming were gathered under three themes which are “problems

” o\

in programming process”, “personal problems” and “problems in class activities”. Figure 2 displays the
model of current theme and its subthemes.

When the patterns within the theme of problems in the programming process were examined, the

I/2A\Y

following sub-themes were observed: “not making repetition”, “code editor’s remark on errors”, “lack

I/8A\Y

of knowledge”, “not writing algorithm” and “benefiting from available codes”; Similarly, “not liking

/\}

programming or department”, “anxiety”, “prejudice” and “inattention” were the other observed themes.

The problems in class activities included patterns in “studying many topics in a short time”, “insufficiency
of time allocated for application” and “instruction of topics not with a step-by -step method”.

16

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

£

reasons of
failures

problems in

o)

personal programming)
roblems HUELSS ‘37 notmaking
g repetition
problems in A
: class activities E%
remérk on
Drej%:lice @ ﬂ”ﬁﬁgble Errors
codes
g notiwiing Ié§ of
- 9 nn\%ing { algarithm knowiedge
inaiecie programming manﬁpics not enough
in a short applicaion

time
nntfézwng

step-by-step
method

Figure 2. Reasons of Failures in Programming

Table 4 shows the corresponding qualifications across the reasons of failures in programming theme.

Table 4
Qualifications Across the Failures in Programming Theme

Reasons of failures in Expanded descriptions

programming

Problems in the programming About reasons of students’ failures in programming process

process
Code editor’s remark on errors About code editor’s remark on errors
Not making repetition About lack of practice in programming
Lack of knowledge About lack of knowledge about topics in programming
Not writing algorithm About not writing an algorithm before writing the program
Benefiting from available codes About using codes written by another person in advance

Personal problems About reasons of failures related to individual experiences
Anxiety About anxiety of being unsuccessful in programming
Not liking programming or the About not liking programming or attending (being a student
department at) the department in general
Prejudice against programming About prejudicing against writing a working program
Inattention About being inattentive while writing a program.

Problems in class activities About reasons of failures confronted with in class activities
Insufficiency of time allocated for About giving lots of information on theoretical knowledge in
application class activities
Studying many topics in a short About not giving enough time on each topic in class
time activities
Instruction of topics without About not giving topics step by step in class activities

following a step-by -step method

17

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

Frequencies of codes related to students’ failures in programming course and their frequencies were
given in Table 5.

Table 5
Codes Related to Students’ Failures in Programming Course and Frequencies

Codes f
Problems in programming process 12
Code editor’s remark on errors 11
Not making repetition 8
Lack of knowledge 5
Not writing algorithm 3
Benefiting from available codes 1
Personal problems 8
Anxiety 5
Not liking programming or department 2
Prejudice against programming 2
Inattention 2
Problems in class activities 3
Insufficiency of time allocated for application 3
Studying many topics in a short time 1
Instruction of topics without following a step-by-step method 1

It was obtained that all students attributed their failures to the problems in the programming process.
Therefore, most of the students stated that code editor’s remark on errors prevents them from learning
codes correctly and they do not repeat topics studied in the classrooms; as a result, they experience
failures. Moreover, it was found that the majority of the students emphasized personal problems.
Example student views related to this issue are as follows:

S9: "In my opinion, everybody should form process in his/her mind since everybody does
in this way. It is necessary to divide it to certain steps. It is taught when you start to
programming. Define problem, determine needs, and etc. I do not expect any problems in
programming if everybody follows these steps and if they prepare necessary algorithms
before programming.” (Problems in programming process-not writing algorithm)

S1: "I think it is about making repetition. When person makes repetition and practice, s/he
gets used to programming. You pass cognitive level, and you attain to application level.
You can write without thinking, but as a first steps you should develop your skills and you
should repeat.” (Problems in programming process- not making repetition)

S9: "It js necessary to look at your codes frequently in order to see where error is and to
control each step while writing your codes. We do not have such a chance on paper. You
might skip some parts on paper; or if you have syntax error and you do not assign first
values to variables, errors become.” (Problems in programming process - code editor’s
remark on errors)

18

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

S3: "Problems come out as a result of lack of knowledge. It is because I do not have
enough knowledge. ” (Problems in programming process-lack of knowledge)

S11: "Also, there are solutions of the problems in the Internet. This is bad.” (Problems in
programming process- benefiting from available codes)

S3: "I do not like spending time for programming so much. I am not interested in writing
a program. ...if somebody tells me or if it is graded, I will do it at that time. I do not so
much willingness.” (Personal problems-not liking programming)

S6: "If I insist on that I cannot do... It becomes when I think and insist on that I cannot
do that. Where do I have problem? I develop anxiety when I cannot do.” (Personal
problems- anxiety)

Problems related to self-efficacy for programming

It was seen that eight students stated they could write any program even if they had to give some
efforts on it. As a result, it can be said that these students have high self-efficacy. Also, it was found
that these students have high success in Web-based programming course and Programming I-II course
taken in prior semesters, and they have high prior experiences related to programming. Other four
students stated that they could not write the program and they had to seek help for it. Example student
views related to this issue are as follows:

S5: "I can write. Normally, when someone wants me to write a program right now or when
s/he says ‘can you do that in this way?’ I cannot do. But I do research about the requested
program. I learn its usage and what I should do for it, and I can do it by trial-errors in a
step-by-step method.”

S6: "PHP or every programming language. After I understand its logic, anyone can ask any
problem related to any programming language. Even if I do not know that programming
language, I learn its general logic and its structure... I prepare an algorithm, concept map
or flowchart. I look at the Internet for the codes of that language, and I change its codes
even if I do not know. I can write. It is not a problem for me.”

S9: “Generally, I think writing. Actually, I want to give an effort for it. Hence, I can write
it in my mind. I do not know whether there was a program I could not write. I guess not.”

S7: "I can write when some sources are on me. Otherwise, I cannot write. I can do when
there are simple problems such as sum of two numbers, but I cannot do when there are
quite complex problems.”

S4: "I cannot solve the problem when you give it to me right now. I haven't still had such
ability.”

Steps followed in programming

Steps the students follow in programming were gathered under five themes which are “trying to

understand the problem”, “preparing algorithm”, “benefiting from available codes”, “finding bugs” and
“making repetition”. Codes related to these themes and their frequencies were given in Table 6.

19

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

Table 6
Codes Related to Steps Followed while Writing Programs and Frequencies

Codes
Trying to understand the problem

Preparing algorithm
Benefiting from available codes
Other documents
Internet
Books
My own notes
Examples academic staff gives
Finding bugs

= BN = = N N N Ul 00 o=

Making repetition

It was determined that the way students follow while writing programs is generally trying to understand
the problem, preparing algorithm, writing and finding bugs in programming. It was obtained that eight
students out of 12 put emphasis on preparing algorithm which carries significant importance in
programming. Consequently, it can be said that the majority of the students try to prepare algorithm
before writing program. Furthermore, 5 students stated that they benefited from the Internet, books
and examples the academic staff gives. It was found that there are 4 students who try to find bugs in
program after they have finished writing coding or while they are writing code. One of the students told
that s/he tried to write a program by making repetitions of examples academic staff gave. Sample
student views related to this issue are as follows:

S5: "Firstly, I examine documents related to the topics. How is it used, what are done,
which examples are there? I make an outline of what I will do while writing codes. For
example, I draw the things I will do before writing codes of a website. I say I will do it
here, and this will be here. Then, I pass them to computer environment. I say 'Complete

77

the first step, and then the second step’.

S1: "Firstly, I try to understand the problem. I form an outline by taking the problem into
account. I think about that which functions I can use and which ways I can follow?’ After
that, I start to write. While I am writing, solution appears. I write and I try to find solutions.”

S7: "I think about how I can solve the problem. It is necessary to have an algorithm to do
it. How will I write? How will I start? Firstly, I prepare an algorithm. Then, I start to write.”

S11: "I form an algorithm in my mind. I draw it on the paper. While I am writing a program,
I look at what is wanted, what I should do for them and how I should proceed. When this
s wrong, I revise the draft.”

Conclusion

In this study, where undergraduate students' views on the causes of failure in programming courses
and the problems they had encountered in programming were examined. In this regard, it has been
observed that students’ difficulties were mainly related to programming knowledge, programming skills,
understanding semantics of the program and debugging; in addition, programming knowledge came to

20

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

the front among others. Difficulties related to programming knowledge can be listed in the following
order; syntax, knowing the concepts or principles related to the programming language, remembering
the functions and its parameters, defining variable and choosing the decision structures and loops that
will be used in program.

The students who participated in the study stated that they had difficulty in recalling for programming
codes/commands in general. This situation can be interpreted as one of the biggest obstacle in
programming success resulted from lack of knowledge about program codes or producing them.
Similarly, Sivasakthi and Rajendran (2011) indicated that students often had problems in code writing.
Another issue which causes the students to have difficulty in programming was determined as
remembering functions related to programming languages and the parameters for these functions.
According to Ala-Mutka (2004), teaching the basic notions of programming after algorithms will increase
programming success.

Syntax errors are one of the topics which students have difficulty while writing programs. Confusion the
students experienced while using punctuation marks and while deciding their place in the code line has
led to appear a considerable number of errors in the program that students wrote. This result is similar
to Tan, Ting and Yang's (2011) study findings which is learning the syntax that is related to programming
is one of the most important problems that the students confronted with in programming.

Unlike programming knowledge possessed by students, the strategies that they need regarding to how
to use this information is defined as programming skills (Caspersen, 2007). Programming skill is one of
the basic skills that students should have in programming (Holvikivi, 2010). In the present study,
students, despite of having programming knowledge required, had difficulties in how they would design
the program. Similarly, Tan, Ting and Yang (2011) stated that the students have problems with problem
solving and separating the problems into steps in programming. Eryilmaz (2003) also stated that
especially the individuals those new to programming (novice programmers) should have problem-solving
skills as a prerequisite.

Students who participated in the study expressed that they have difficulties in debugging especially if
written by another person. In a similar study, Tan, Ting and Yang (2011) emphasized that one of the
issues that the students have difficulty is finding bugs in the program. According to Bednarik and
Tukiainen (2004), debugging is directly related to previous programming experience, advanced
programmers are more successful than novice programmers in debugging. Thus, it was seen in this
study that the students whose programming experience is comparably higher expressed that they
wouldn't find bugs in program.

Another issue emphasized in the study is the reasons of failures of the students in programming courses.
Student’ experiences related to this issue were gathered under three themes. These themes have been
ranked in sequence in descending order: problems in the programming process, personal problems, and
problems they faced during in-class activities. The scope of the problems related to in the process of
programming topics that lead to failure are listed as not making repetition, code editor’s remark on
errors, lack of knowledge, not writing algorithm and benefiting from available codes. Within the scope
of the personal problems are dislike programming or attending the department, prejudice against
programming, anxiety and inattention. Finally, the scope of the problems they faced during in-class
activities are listed as studying many topics in a short time, insufficiency of time allocated for application
and instruction of topics without following a step-by-step method.

The majority of students stated that the biggest reasons of their failure in programming were related
to themselves since they do not work hard enough in programming. In addition, not allocating extra

time to programming and to course activities and assignments, as well as insufficient repetitions about

21

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

the programs learned in the lessons were articulated among the others. In the literature, it has been
emphasized that undergraduate students need lots of practice to increase their programming skills (Law,
Lee & Yu, 2010). Similarly, Hawi (2010) determined that the most important factors that cause students
to fail are lack of study, lack of effort and lack of practice. Accordingly, studying on a computer
programming language requires making many activities such as reading textbooks and reference books
recommended, using online libraries to writing code, learning syntax and logical concepts, analyzing
available programs and modifying them.

Students whose previous programming experience are higher (advanced programmers) highlighted that
programming performance is dependent on preparing an algorithm. Similarly, Bednarik and Tukiainen
(2004) stated that while advanced programmers build hypotheses before writing a program, novice
programmers start with writing the program directly. Preparing algorithm become prominent as the
primarily issue for especially novice programmers who begin learning a new programming language
(Eryilmaz, 2003). Because in the process of preparing an algorithm, flow charts which determine the
steps to be followed and strategies to be used in the solution of the problem are created. According to
Ala-Mutka (2004), algorithm training which is given in the programming process helps teaching the
programming language more easily and in a simple manner. However, it has been seen that developing
the algorithmic thinking is one of the biggest problems in programming courses (Ziatdinov & Musa,
2012), because preparing algorithms is perceived as a difficult process and time-consuming by the
students.

Other important reasons of the failure that the students confronted with in programming are prejudice
against programming and anxiety. In this study it was observed that while the students who like
programming reported that they often spend extra time to their self-development, find alternative ways
to solve the problem or write more qualified programs; on the other hand, the students who have high
level of prejudice against programming feel angry and stressed out when writing programs. Thus, they
don't want to spend extra time on programming. Students who have high level of programming anxiety
don’t want to learn programming, because they think that programming is a difficult and boring process
(Tan, Ting & Ling, 2009).

According to another result obtained in the study, it was seen that advanced programmers have a higher
level of programming performance. In the literature, there are studies related to that advanced
programmers are more successful than novice programmers in programming (Lau & Yuen, 2011; Liao
& Bright, 1991). This situation can be interpreted as that lack of prior knowledge and experience is
another reason of the reason of the students’ failure. On the other hand, in this study, it was realized
that the students who have graduated from vocational school failed although they were took many
programming lessons. This situation supports the findings of that programming experience has a
nondirective effect on programming success (Bergersen & Gustafsson, 2011; Jegede, 2009). According
to Bergersen and Gustafsson (2011), programming experience affects primarily programming
knowledge, and then programming knowledge affects programming success. Self-efficacy is considered
as the other mediator variable that affects the success of programming in conjunction with experience.
According to this, students’ preliminary experiences in programming increase their self-efficacy, and
perceived self-efficacy increases programming success (Jegede, 2009). In the literature, it was indicated
that there is a positive correlation between students’ self-efficacy and the number of programming
courses taken by them (Altun & Mazman, 2012; Jegede, 2009), and the number of years in programming
affects their self-efficacy significantly (Altun & Mazman, 2012; Askar & Davenport, 2009).In this study,
it was observed that students who had considerably higher level of programming success also had a
higher level of self-efficacy as well. These students defined programming as that it is actually an easy
process as long as necessary repetitions are made and it is started with algorithm before writing the
program. Therefore, the students believe that they can write program codes successfully if they take

22

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

enough time. This finding is similar to the results of the studies which found that perceived self-efficacy
increases the programming success (Cegielski & Hall, 2006).

As a result, to get all the benefits of programming, effective programming education should be given
especially in higher education institutions (Fessakis, Gouli & Mavroudi, 2013). It is highlighted that the
current curricula should be reconstructed by increasing lesson hours of programming courses and
widening their scope. Moreover, more emphasis is called on teaching programming (Akpinar & Altun,
2014); hence, programming education should be carried out taking into account aforementioned
problems and present situation.

Further research could determine the reasons of the students’ failures in visual programming courses.
Also, introspective methods could be used with the aim of better documenting the obstacles and
difficulties that the students confronted with in programming. Different programming languages have
different application features, code brevity, and extensibility and so on. Therefore, the usage of
alternative programming languages would be valuable for demonstration the differences between
programming languages and comparison of the results.

References

Akpinar, Y., & Altun, A. (2014). Bilgi toplumu okullarinda programlama egitimi gereksinimi. fikdgretim
Online (131, 1-4.

Ala-Mutka, K. (2004). Problems in learning and teaching programming. Institute of Software Systems,
Tampere University of Technology.

Altun, A., & Mazman, S. G. (2012). Programlamaya Iliskin Oz Yeterlilik Algisi Olcedinin Ttirkge Formumun
Gecerlilik ve Glivenirlik Calismasi. Egitimde ve Psikolojide Olcme ve Degerlendirme Dergisi, Kis
2012, 3(2), 297- 308.

Ambrosio, A. P., Costa, F. M., Almeida, L., Franco, A., & Macedo, J. (2011). Identifying cognitive abilities
to improve CS1 outcome. Frontiers in Education Conference (FIE). , 12-15 October.

Arabacioglu, T., Biilbiil, H. 1., & Filiz, A. (2007). Bilgisayar programlama 6gretiminde yeni bir yaklagim.
Akademik Bilisim 2007, Kitahya Dumlupinar Universitesi.

Askar, P., & Davenport, D. (2009). An investigation of factors related to self-efficacy for Java
programming among engineering students. 7he Turkish Online Journal of Educational
Technology (TOJET), &1).

Bednarik, R., & Tukiainen, M. (2004). Visual attention and representation switching in java program
debugging: a study using eye movement tracking. In Proceedings of 16th Annual Psychology of
Programming Interest Group Workshop (PPIG'04), Institute of Technology Carlow, Ireland, April
5-7, 2004, pp. 159-169.

Bergersen, G. R., & Gustafsson, J. E. (2011). Programming skill, knowledge, and working memory
among professional software developers from an investment theory perspective. Journal of
Indlividual Differences, 324), 201-209.

Caspersen, M. E. (2007). Educating Novices in the Skills of Programming. (PhD), University of Aarhus
Denmark.

Cegielski, C. G., & Hall, D. J. (2006). What makes a good programmer? Communications of the ACM,
4910), 73-75.

23

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

Clements, D., & Sarama, J. (2003). Strip mining for gold: research and policy in educational technology
— a response to “fool’s gold”. AACE Journal. ISSN: 1551-3696, 11(1), 7—69, Association for the
Advancement of Computing in Education, Norfolk, VA, USA.

Crescenzi, P., Malizia, A., Verri, M. C., Diaz, P., & Aedo, 1. (2012). Integrating algorithm visualization
video into a first-year algorithm and data structure course. Educational Technology and Society,
152), 115-124.

Creswell, J. W. (2008). Educational research: Planning, conducting, and evaluating quantitative and
qualitative research (3rd ed.). Upper Saddle River, New Jersey: Pearson Education, Inc.

Creswell, J. W. (2007). Qualitative Inquiry and Research Design. Choosing among five approaches (2nd
ed.). Thousand Oaks, CA: Sage.

diSessa, A.A., & Abelson, H.(1986). Boxer: A reconstructible computational medium. Communications
of the ACM, 299), 859-868.

Eryilmaz, S. (2003). Algoritma tasarlama ve programlamaya giris. Ankara: Detay Yayincilik.

Ferrer-Mico, T., Prats-Fernandez, M. A., & Redo-Sanchez, A. (2012). Impact of Scratch programming
on students” understanding of their own learning process. Procedia - Social and Behavioral
Sciences 46 (2012), 1219-1223.

Fessakis, G., Gouli, E., & Mavrodi, E. (2013). Problem solving by 5-6 years old kindergarten children in
a computer programming environment: A case study. Computers and Education 63 (2013), 87-
97.

Glesne, C. (2013). Nitel/ Arastirmaya Giris (Ceviri Editorleri: Ali Ersoy & Pelin Yalcinoglu). 2. Baski.
Ankara: Ani Yayincilik.

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate students in an
introductory-level computer programming course. Computers and Education 54 (2010), 1127-
1136.

Holvikivi, J. (2010). Conditions for Successful Learning of Programming Skills. In N. Reynolds & M.
Turcsanyi-Szabd (Eds.), Key Competencies in the Knowledge Society. 324, 155-164. Springer
Berlin Heidelberg.

Hwang W.Y., Shadiev, R., Wang C. Y., & Huang, Z. H. (2012). A pilot study of cooperative programming
learning behavior and its relationship with students’ learning performance. Computers and
Education 58 (2012), 1267-1281.

Jegede, P. O. (2009). Predictors of java programming self—efficacy among engineering students in a
Nigerian University. International Journal of Computer Science and Information Security
(LJCSIS), 42).

Jiau, H. C,, Chen, J. C., & Su, K. F. (2009). Enhancing self-motivation in learning programming using
game-based simulation and metrics. IEEE Transactions on Education, 524), 555-562.

Lau, W. W. F., & Yuen, A. H. K. (2009). Exploring the effects of gender and learning styles on computer
programming performance: implications for programming pedagogy. British Journal of
Educational Technology, 40(4), 696-712.

Lau, W. W. F., & Yuen, A. H. K. (2011). Modeling programming performance: Beyond the influence of
learner characteristics. Computers and Education, 5A1), 1202-1213.

Law, K., Lee, V., & Yu, Y. T. (2010). Learning motivation in e-learning facilitated computer programming
courses. Computers and Education 55 (2010), 218-228.

24

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

Liao, Y. C., & Bright, G. W. (1991). Effects of computer programming on cognitive outcomes: a meta-
analysis. Journal of Educational Computing Research, 7(3), 251-266.

Mannila, L., Peltomaki, M., & Salakoski, T. (2006). What about a simple language? Analyzing the
difficulties in learning to program. Computer Science Education, 16(3), s:211-227.

Papert, S. (1991). Mindstorms: Children, computers and powerful ideas. Athens: Odysseas Publications
(in Greek).

Patton, M. Q. (1990). Qualitative evaluation and research methods (2nd ed.). Newbury Park, CA: Sage
Publications.

Rajala, T., Laakso, M.]., Kaila, E., & Salakoski, T. (2008). Effectiveness of program visualization: a case
study with the VILLE tool. Journal of Information Technology Education: Innovations in Practice,
20087), 15-32.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A Review and
Discussion. Computer Science Education, 132), 137-172.

Shaw, R. S. (2012). A study of the relationships among learning styles, participation types, and
performance in programming language learning supported by online forums. Computers and
Education 58 (2012), 111-120.

Sivasakthi, M., & Rajendran, R. (2011). Learning difficulties of 'object-oriented programming paradigm
using Java': students’ perspective. Indian Journal of Science and Technology, 8(4), 983-985.

Sullivan, A., & Bers, M. U. (2012). Gender differences in kindergarteners' robotics and programming
achievement. International Journal of Technology and Design Education, 23(3), 691-702.

Tan, P. H.,, Ting, C. Y., & Ling, S. W. (2009). Learning difficulties in programming courses:
Undergraduates’ perspective and perception. 2009 International Conference on Computer
Technology and Development, Kota Kinabalu, Malaysia.

Utting, 1., Cooper, S., Kélling, M., Maloney, J., & Resnick, M. (2010). Alice, Greenfoot, and scratch - a
discussion. ACM Transactions on Computing Education, 10(4), 1-11.

Yildirm, A., & Simsek, H. (2008). Sosyal Bilimlerde Nitel Arastirma Yontem/eri (6. Baski), Ankara: Seckin
Yayinevi.

Yurdugiil, H., & Askar, P. (2013). Learning programming, problem solving and gender: A longitudinal
study. Procedia - Social and Behavioral Sciences, 83, 605-610.

Ziatdinov, R., & Musa, S. (2012). Rapid mental computation system as a tool for algorithmic thinking of
elementary school students development. European Researcher, 25(7), 1105-1110.

GENISLETILMiS 0z

Programlama dili 6§renme oldukca uzun bir zaman gerektiren zor bir siirectir. Ozellikle lisans diizeyindeki
programlama dersleri gogunlukla (st diizey diisinme becerileri gerektirdigi icin genellikle giris
seviyesinde programlama bilgisine sahip dgrenciler tarafindan oldukca zor olarak algilanmaktadir (Tan,
Ting ve Ling, 2009; Glltekin, 2006). Yapilan calismalar 6drencilerin cogunun programlama dili
o6grenmede giicliik cektigini gostermektedir (Baser, 2012; Ambrosio vd., 2011; Hawi, 2010; Askar ve
Davenport, 2009). Bu durum dgrencilerin programlama derslerinde basarisiz olmasiyla sonuglanmaktadir
(Robins, Rountree ve Rountree, 2003; Baldwin ve Kuljis, 2000). Ogrencilerin tekrarlayan basarisizlik

25

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

deneyimi, ozellikle programlama dili 6grenmeye karsi heyecan ve ilgilerini kaybetmelerine neden
olmaktadir (Law, Lee ve Yu, 2010). Bu durum arastirmacilarin programlama basarisini artirmak lizere
calismalar yapmalari ve bu konuda farkl yontemler gelistirmelerine neden olmustur. Ancak yapilan bu
galismalar yeterli olmamistir. Programlama dilleri dersi gliniimiizde hala &grencilerin en gok zorlandig
ve basarisiz oldugu derslerden biri olmaya devam etmektedir. Buradan hareketle, yapilan galisma ile
Universite 6grencilerinin programlama derslerindeki basarisizliklarinin nedenlerinin ortaya koyulmasi ve
programlama stirecinde yasadiklari problemlere iliskin gériglerinin incelenmesi amaclanmistir.

Calisma nitel arastirma yontemlerinden fenomenoloji yaklasimi ile desenlenmistir. Calisma grubu, 2013-
2014 giiz yariyilinda Tiirkiye’de bir devlet {iniversitesinde Iinternet Tabanli Programlama dersine devam
eden ogrenciler arasindan secilmistir. Calisma grubunun belirlenmesinde amagch 6rnekleme yontemi
cesitlerinden 6lciit drnekleme kullaniimistir. Olgiit olarak, dncelikle ifade yetenedi yiiksek 18 égrenci
secilmis, daha sonra calismaya katiimaya gondlli oldugunu ifade eden 12 6grenci ile goriisme
yapilmistir. Verilerin toplanma siirecinde 6ncelikle dersin laboratuvar etkinlikleri iki hafta sireyle
arastirmaci tarafindan yapilandiriimamis gozlem teknidi ile gézlemlenmistir. Katilimcr olunmayan gozlem
anlayisina uygun bigimde yapilan goézlemlerin timi video kaydina alinmistir. Yapilan gdzlem ile
ylritllmesi planlanan galismanin alt amagclari, galisma grubu, calismanin yapilacagl ortam hakkinda
karar verilmistir. Bu dogrultuda 6grencilerle, programlama siirecinde yasadiklar zorluklara iligkin
gortisme yapilmasi kararlastirlmistir. Gorismeler yari yapilandiriimis goériisme tiriine uygun olarak
hazirlanmis ve bireysel goriisme seklinde gercgeklestirilmistir. Timi sesli kayit altina alinmistir. Elde
edilen veriler icerik analizine uygun olarak ¢oziimlenmistir. Kodlamalara iliskin dederlendiriciler arasi
givenirligi saglamak amaciyla, oOncelikle veriler ilk yazar tarafindan kodlanmis ve temalar
olusturulmustur. Daha sonra, bu temalar ve temalara iliskin rastgele secilen érnek cimleler nitel
arastirma yontemleri dersi almig iki uzmana verilmis ve kodlarla 6érnek climleleri eslestirmeleri istenmistir.
Uyum ylzdesi %81 olarak hesaplanmistir.

Ogrencilerin programlama siirecinde yasadiklari zorluklarin programlama bilgisi, programlama becerisi,
programin mantigini kavrama ve hata ayiklama (izerinde yogunlastigi goriilmiistiir. Arastirmaya katilan
ogrenciler, bliylik cogunlukla programlamaya iliskin genel kavram ve ilkeleri hatirlamakta zorlandiklarini
ifade etmiglerdir. Ogrenciler, gerekli programlama bilgisine sahip olmalarina ragmen programi nasil
tasarlayacaklarina iliskin zorluk yasadiklarini da belirtmektedirler. Bednarik ve Tukiainen’e (2004) gore,
bir hata aylklama programlama deneyimiyle dogrudan iliskilidir, programlama deneyimi yiiksek olan
ogrenciler diisiik olanlara gore hata ayiklamada daha basarilidirlar. Nitekim mevcut calismada da 6nceki
programlama deneyimi yiiksek olan 6grencilerin programdaki hatalari bulmakta zorlanmayacaklari
yoniinde gériis belirttikleri goriimistiir. Ogrencilerin bilyiik ¢ogunlugu, programlama konusunda
yeterince galismamalarini, ders kapsaminda yapilan etkinlikler ve verilen édevler disinda programlama
icin ek zaman ayirmamalarini ve verilen programlari tekrar etmemelerini programlama dillerindeki
basarisizliklarinin en bliylik nedeni olarak belirtmisglerdir. Ayrica, programlama deneyimi yiksek olan
Ogrenciler, programlama basarisinin algoritma olusturmaya bagh oldugunu vurgulamislardir. Algoritma
olusturma, ozellikle bir programlama dilini yeni 6grenmeye baslayan 6drencilerin en basta 6grenmesi
gereken konu olarak 6ne ¢ikmaktadir (Imal ve Eser, 2009; Eryilmaz, 2003). Ancak égrenciler, algoritma
olusturmayi vakit alici ve zor bir stireg olarak algiladiklari igin (Futschek ve Moschitz, 2010) programlama
derslerinde algoritmik diisinmeyi gelistirme en buiylik problemlerden biri olarak goriilmektedir (Ziatdinov
ve Musa, 2012). Ek olarak, programlamayi sevdigini belirten &grencilerin genellikle kendilerini
gelistirmek, problemin ¢6ziimiinde alternatif yollar bulmak veya daha nitelikli programlar yazmak igin
ekstra zaman harcadiklar goriliirken; programlamaya iliskin 6n yargisi olan 6grencilerin program
yazarken kendilerini sinirli ve stresli hissettikleri ve programlama icin ek vakit ayirmak istemedikleri
gorilmistir. Bir diger sonug, programlama deneyimi yiiksek olan dgrencilerin programlama basarisinin
yliksek olmasidir. Ancak, bazi 6grencilerin meslek lisesi mezunu olmalari nedeniyle birgok programlama
dersi almalarina ragmen basansiz olduklari gériilmistir. Bergersen ve Gustafsson’a (2011) gore

26

Turkish Online Journal of Qualitative Inquiry, July 2014, 5(3)

Ogrencilerin programlama deneyimi 6ncelikli olarak programlama bilgisine, programlama bilgisi de
programlama basarisina etki etmektedir. Deneyim ile birlikte programlama basarisini etkileyen bir diger
ara degisken ise 6z yeterlilik olarak kabul edilmektedir. Buna gére 6grencilerin programlamaya iliskin
sahip olduklar 6n deneyimler 6z yeterliliklerini artirmakta, 6z yeterlilik algisi ise programlama basarisini
artirmaktadir (Jegede, 2009). Calismada programlamaya iliskin 6z vyeterlilik algisi yliksek olan
ogrencilerin sayisinin digerlerine gore daha fazla oldugu ve programlama basarisi yliksek 6grencilerin
ayni zamanda yliksek diizeyde 06z yeterlilige sahip olduklari belirlenmistir.

Sonug olarak, 6grencilerin programlama siirecinde yasadiklari gigliikleri ve karsilastiklari engelleri en
aza indirebilmek icin Ozellikle yiksekégretim kurumlarinda uygun programlama egitimi verilmesi
gerekmektedir (Fessakis, Gouli ve Mavroudi, 2013). Mevcut miifredatin programlama derslerinin
saatlerinin artirilmasi ve bu derslerin kapsaminin genisletilmesi suretiyle yeniden diizenlenmesi gerektigi
vurgulanmaktadir. Ayrica, programlama egitimine daha fazla dnem verilmelidir (Akpinar & Altun, 2014);
bu kapsamda, programlama egitimi s6z konusu sorunlar ve mevcut durum dikkate alinarak yapilmalidir.

27

