Progress in Smart Industrial Control based on Deep SCADA
Main Article Content
Abstract
The SCADA system, acronym of ‘’Supervising Control and Data Acquisition’’ tends to improve its accuracy in detecting faults. In that, it uses fault diagnosis models based mostly on probabilistic methods with close uncertainties. These models are based on a subjective evaluation by comparing the obtained signal to its reference. Therefore, SCADA precision fault detection varies depending on the operation environment, system design and analysis approach among other factors. The contribution of this research work is to propose a smart strategy that will enrich and enhance failure recognition in SCADA systems by integrating two additional models into the classic technique. The first model is a SOM map- reduce simple classifier and the second model is an evolutionary recurrent self-organizing neural filter for final decision-making. This integrated paradigm improves results accuracy and robustness against signal interference. The proposed idea involves best details around any remotely listed defect. This study has been conducted on Simulink-Matlab, through the analysis of multi signals emitted by sensors and received by corresponding antennas.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.